Pseudomonas aeruginosa May Accumulate Drug Resistance Mechanisms without Losing Its Ability To Cause Bloodstream Infections

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

In this study, we systematically investigated the resistance mechanisms to beta-lactams, aminoglycosides, and fluoroquinolones of 120 bacteremic strains of Pseudomonas aeruginosa. Pulsed-field gel electrophoresis genotyping showed that 97 of these strains were represented by a single isolate, 10 by 2 and 1 by 3 clonally related isolates, respectively. Seventy-five percent (90 out of 120) of the bacteremic P. aeruginosa strains displayed a significant resistance to one or more of the tested antimicrobials (up to 11 for 1 strain). These strains were found to harbor a great diversity of resistance mechanisms (up to 7 in 1 strain), leading to various levels of drug resistance. Interestingly, 11 and 36% of the isolates appeared to overproduce the MexAB-OprM and MexXY-OprM efflux systems, respectively. Altogether, our results show that P. aeruginosa may accumulate intrinsic (overproduction of cephalosporinase AmpC, increased drug efflux, fluoroquinolone target mutations, and deficient production of porin OprD) and exogenous (production of secondary beta-lactamases and aminoglycoside-modifying enzymes) resistance mechanisms without losing its ability to generate severe bloodstream infections. Consequently, clinicians should be aware that multidrug-resistant P. aeruginosa may remain fully pathogenic.

Knowledge Graph

Similar Paper

Pseudomonas aeruginosa May Accumulate Drug Resistance Mechanisms without Losing Its Ability To Cause Bloodstream Infections
Antimicrobial Agents and Chemotherapy 2007.0
Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2009.0
Cumulative Effects of Several Nonenzymatic Mechanisms on the Resistance of Pseudomonas aeruginosa to Aminoglycosides
Antimicrobial Agents and Chemotherapy 2007.0
Efflux Pumps, OprD Porin, AmpC β-Lactamase, and Multiresistance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients
Antimicrobial Agents and Chemotherapy 2010.0
Efflux Unbalance in Pseudomonas aeruginosa Isolates from Cystic Fibrosis Patients
Antimicrobial Agents and Chemotherapy 2009.0
Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump
Antimicrobial Agents and Chemotherapy 2008.0
Development and Persistence of Antimicrobial Resistance in Pseudomonas aeruginosa : a Longitudinal Observation in Mechanically Ventilated Patients
Antimicrobial Agents and Chemotherapy 2007.0
Relationship between Antibiotic Use and Incidence of MexXY-OprM Overproducers among Clinical Isolates of Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2008.0
Correlation of Antimicrobial Resistance with β-Lactamases, the OmpA-Like Porin, and Efflux Pumps in Clinical Isolates of Acinetobacter baumannii Endemic to New York City
Antimicrobial Agents and Chemotherapy 2008.0
Occurrence of Efflux Mechanism and Cephalosporinase Variant in a Population of Enterobacter aerogenes and Klebsiella pneumoniae Isolates Producing Extended-Spectrum β-Lactamases
Antimicrobial Agents and Chemotherapy 2009.0