Preparation and characterization of N-(3-pyridinyl) spirocyclic diamines as ligands for nicotinic acetylcholine receptors

Bioorganic & Medicinal Chemistry Letters
2009.0

Abstract

Several N-pyridin-3-yl spirobicyclic diamines, designed as conformationally restricted analogs of tebanicline (ABT-594), were synthesized as novel ligands for nicotinic acetylcholine receptors (nAChR). The spirocyclic compounds exhibited weaker binding affinity, than other constrained analogs in accord with a pharmacophore model. Nevertheless, some (1a, 1b) possessed (partial) agonist potencies comparable to nicotine at the alpha4beta2 subtype, but with greatly improved selectivity relative to the alpha3beta4* nAChR.

Knowledge Graph

Similar Paper

Preparation and characterization of N-(3-pyridinyl) spirocyclic diamines as ligands for nicotinic acetylcholine receptors
Bioorganic & Medicinal Chemistry Letters 2009.0
Coaxing a Pyridine Nucleus To Give Up Its Aromaticity:  Synthesis and Pharmacological Characterization of Novel Conformationally Restricted Analogues of Nicotine and Anabasine<sup>#</sup>
Journal of Medicinal Chemistry 2004.0
The 3,7-diazabicyclo[3.3.1]nonane scaffold for subtype selective nicotinic acetylcholine receptor ligands. Part 2: Carboxamide derivatives with different spacer motifs
Bioorganic &amp; Medicinal Chemistry 2013.0
Conformationally Constrained Nicotines:  Polycyclic, Bridged, and Spiro-Annulated Analogues as Novel Ligands for the Nicotinic Acetylcholine Receptor
Journal of Medicinal Chemistry 2002.0
Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype
European Journal of Medicinal Chemistry 2016.0
Novel N-aryl nicotinamide derivatives: Taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors
European Journal of Medicinal Chemistry 2019.0
Synthesis and Structure−Activity Relationship Studies of 3,6-Diazabicyclo[3.2.0]heptanes as Novel α4β2 Nicotinic Acetylcholine Receptor Selective Agonists
Journal of Medicinal Chemistry 2007.0
Structure−Activity Studies and Analgesic Efficacy ofN-(3-Pyridinyl)-Bridged Bicyclic Diamines, Exceptionally Potent Agonists at Nicotinic Acetylcholine Receptors
Journal of Medicinal Chemistry 2007.0
Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations
European Journal of Medicinal Chemistry 2015.0
Chemistry and Pharmacological Characterization of Novel Nitrogen Analogues of AMOP-H-OH (Sazetidine-A, 6-[5-(Azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-Nicotinic Acetylcholine Receptor-Selective Partial Agonists
Journal of Medicinal Chemistry 2010.0