Dancing of the Second Aromatic Residue around the 6,8-Diazabicyclo[3.2.2]nonane Framework: Influence on σ Receptor Affinity and Cytotoxicity

Journal of Medicinal Chemistry
2009.0

Abstract

A series of 6,8-diazabicyclo[3.2.2]nonane derivatives bearing two aromatic moieties was prepared, the affinity toward sigma(1) and sigma(2) receptors was investigated, and the growth inhibition of six human tumor cell lines was determined. The enantiopure bicyclic ketones 5a ((+)-(1S,5S)-6-allyl-8-(4-methoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9-trione) and 5b ((+)-(1S,5S)-6-allyl-8-(2,4-dimethoxybenzyl)-6,8-diazabicyclo[3.2.2]nonane-2,7,9-trione) as well as their enantiomers ent-5a and ent-5b served as chiral building blocks, which were derived from (S)- and (R)-glutamate, respectively. Structure-affinity relationships revealed that 11a (K(i) = 154 nM), ent-11a (K(i) = 91 nM), and ent-17a (K(i) = 104 nM) are the most potent sigma(1) ligands. High sigma(2) affinity was achieved with 17b (K(i) = 159 nM) and 8b (K(i) = 400 nM). The bicyclic sigma ligands showed a selective growth inhibition of the small cell lung cancer cell line A-427 with the benzyl ethers 11 and the benzylidene derivatives 17 being the most potent compounds. 11a has a cytotoxic potency (IC(50) = 0.92 muM), which exceeds the activity of cisplatin and interacts considerably with both sigma(1) and sigma(2) receptors.

Knowledge Graph

Similar Paper

Dancing of the Second Aromatic Residue around the 6,8-Diazabicyclo[3.2.2]nonane Framework: Influence on σ Receptor Affinity and Cytotoxicity
Journal of Medicinal Chemistry 2009.0
Relationships between the structure of 6-substituted 6,8-diazabicyclo[3.2.2]nonan-2-ones and their σ receptor affinity and cytotoxic activity
Bioorganic & Medicinal Chemistry 2009.0
Relationships between the structure of 6-allyl-6,8-diazabicyclo[3.2.2]nonane derivatives and their σ receptor affinity and cytotoxic activity
Bioorganic & Medicinal Chemistry 2009.0
Synthesis of Bicyclic σ Receptor Ligands with Cytotoxic Activity
Journal of Medicinal Chemistry 2007.0
Rigidity versus Flexibility: Is This an Issue in σ<sub>1</sub>Receptor Ligand Affinity and Activity?
Journal of Medicinal Chemistry 2016.0
Synthesis, Cytotoxicity Evaluation, and Computational Insights of Novel 1,4-Diazepane-Based Sigma Ligands
ACS Medicinal Chemistry Letters 2020.0
Exploring the Importance of Piperazine N-Atoms for σ<sub>2</sub>Receptor Affinity and Activity in a Series of Analogs of 1-Cyclohexyl-4-[3-(5-methoxy-1,2,3,4-tetrahydronaphthalen-1-yl)propyl]piperazine (PB28)
Journal of Medicinal Chemistry 2009.0
Synthesis and pharmacological evaluation of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline derivatives as sigma-2 receptor ligands
European Journal of Medicinal Chemistry 2018.0
Novel σ1 antagonists designed for tumor therapy: Structure – activity relationships of aminoethyl substituted cyclohexanes
European Journal of Medicinal Chemistry 2021.0
Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands
European Journal of Medicinal Chemistry 2019.0