Molecular Cloning, Characterization, and Inhibition Studies of the Rv1284 β-Carbonic Anhydrase from Mycobacterium tuberculosis with Sulfonamides and a Sulfamate

Journal of Medicinal Chemistry
2009.0

Abstract

The beta-carbonic anhydrase (CA, EC 4.2.1.1) encoded by the gene Rv1284 (mtCA 1) of Mycobacterium tuberculosis shows appreciable catalytic activity for CO(2) hydration, with a k(cat) of 3.9 x 10(5) s(-1) and a k(cat)/K(m) of 3.7 x 10(7) M(-1) s(-1). A panel of 36 sulfonamides and one sulfamate, some of which are used clinically, were assayed for their effect on mtCA 1 catalytic activity. Most sulfonamides exhibited K(I) values in the range of 1-10 microM, but several derivatives, including sulfanilyl-sulfonamides acetazolamide, methazolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and the sulfamate topiramate, exhibited submicromolar inhibition (K(I) values of 0.481-0.905 microM). The best inhibitors were 3-bromosulfanilamide and indisulam (K(I) values of 97-186 nM). This study demonstrates that mtCA 1 can be inhibited by sulfonamides and sulfamates and thus has potential for developing antimycobacterial agents with an alternate mechanism of action. This is an important finding to explore further, as many strains exhibit multidrug resistance and extensive multidrug resistance to existing therapeutics.

Knowledge Graph

Similar Paper

Molecular Cloning, Characterization, and Inhibition Studies of the Rv1284 β-Carbonic Anhydrase from Mycobacterium tuberculosis with Sulfonamides and a Sulfamate
Journal of Medicinal Chemistry 2009.0
Carbonic Anhydrase Inhibitors. Cloning, Characterization, and Inhibition Studies of a New β-Carbonic Anhydrase from Mycobacterium tuberculosis
Journal of Medicinal Chemistry 2009.0
Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active β-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c
Bioorganic & Medicinal Chemistry Letters 2009.0
Carbonic anhydrase inhibitors. Inhibition of the Rv1284 and Rv3273 β-carbonic anhydrases from Mycobacterium tuberculosis with diazenylbenzenesulfonamides
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of Low Nanomolar and Subnanomolar Inhibitors of the Mycobacterial β-Carbonic Anhydrases Rv1284 and Rv3273
Journal of Medicinal Chemistry 2009.0
Cloning, Characterization, and Inhibition Studies of a β-Carbonic Anhydrase from Brucella suis
Journal of Medicinal Chemistry 2010.0
Inhibition of β-carbonic anhydrases with ureido-substituted benzenesulfonamides
Bioorganic & Medicinal Chemistry Letters 2011.0
A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth
Bioorganic & Medicinal Chemistry 2011.0
Inhibition studies of the β-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium with sulfonamides and sulfamates
Bioorganic & Medicinal Chemistry 2011.0
Carbonic anhydrase inhibitors. Inhibition of the prokariotic beta and gamma-class enzymes from Archaea with sulfonamides
Bioorganic & Medicinal Chemistry Letters 2004.0