Use of Acetylcholine Binding Protein in the Search for Novel α7 Nicotinic Receptor Ligands. In Silico Docking, Pharmacological Screening, and X-ray Analysis

Journal of Medicinal Chemistry
2009.0

Abstract

Acetylcholine binding protein (AChBP) is widely considered as a functional and structural homologue of the ligand binding domain of Cys-loop receptors. We report the use of AChBP as template to identify ligands for the nicotinic receptors (nAChRs). An in silico screening protocol was set up and applied to crystal structures of AChBP. Several ligands containing a dibenzosuberyl moiety were identified and shown to bind with high affinity to AChBP and alpha7 nAChRs. Two high affinity ligands were cocrystallized with AChBP, revealing the binding mode in the orthosteric site. Functional studies revealed that these two ligands caused inhibition of the alpha7, alpha4beta2, and 5HT(3) receptors. The noncompetive blockade of the receptors suggests that these compounds act by steric hindrance of the channel. The analysis of the dual binding mode of these dibenzosuberyl-containing compounds can lead to better understanding of the complex mode of action of similar tricyclic ligands on Cys-loop receptors.

Knowledge Graph

Similar Paper

Use of Acetylcholine Binding Protein in the Search for Novel α7 Nicotinic Receptor Ligands. In Silico Docking, Pharmacological Screening, and X-ray Analysis
Journal of Medicinal Chemistry 2009.0
Acetylcholine binding protein (AChBP) as template for hierarchical in silico screening procedures to identify structurally novel ligands for the nicotinic receptors
Bioorganic & Medicinal Chemistry 2011.0
Structure-based design, synthesis and structure–activity relationships of dibenzosuberyl- and benzoate-substituted tropines as ligands for acetylcholine-binding protein
Bioorganic & Medicinal Chemistry Letters 2012.0
Identification of novel α7 nicotinic receptor ligands by in silico screening against the crystal structure of a chimeric α7 receptor ligand binding domain
Bioorganic & Medicinal Chemistry 2012.0
Insights into the Structural Determinants Required for High-Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors: An Integrated Approach to Behaviorally Active Nicotinic Ligands
Journal of Medicinal Chemistry 2012.0
Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane
European Journal of Medicinal Chemistry 2015.0
In silico characterization of cytisinoids docked into an acetylcholine binding protein
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes
Journal of Medicinal Chemistry 2009.0
Novel N-aryl nicotinamide derivatives: Taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors
European Journal of Medicinal Chemistry 2019.0
Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors
European Journal of Medicinal Chemistry 2018.0