Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing ofPseudomonas aeruginosaand Attenuates ChronicP. aeruginosaLung Infection inCftr/Mice

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

The consequences of O-acetylated alginate-producing Pseudomonas aeruginosa biofilms in the lungs of chronically infected cystic fibrosis (CF) patients are tolerance to both antibiotic treatments and effects on the innate and the adaptive defense mechanisms. In clinical trials, azithromycin (AZM) has been shown to improve the lung function of CF patients. The present study was conducted in accordance with previous in vitro studies suggesting that the effect of AZM may be the inhibition of alginate production, blockage of quorum sensing (QS), and increased sensitivity to hydrogen peroxide and the complement system. Moreover, we show that AZM may affect the polymerization of P. aeruginosa alginate by the incomplete precipitation of polymerized alginate and high levels of readily dialyzable uronic acids. In addition, we find that mucoid bacteria in the stationary growth phase became sensitive to AZM, whereas cells in the exponential phase did not. Interestingly, AZM-treated P. aeruginosa lasI mutants appeared to be particularly resistant to serum, whereas bacteria with a functional QS system did not. We show in a CF mouse model of chronic P. aeruginosa lung infection that AZM treatment results in the suppression of QS-regulated virulence factors, significantly improves the clearance of P. aeruginosa alginate biofilms, and reduces the severity of the lung pathology compared to that in control mice. We conclude that AZM attenuates the virulence of P. aeruginosa, impairs its ability to form fully polymerized alginate biofilms, and increases its sensitivity to complement and stationary-phase killing, which may explain the clinical efficacy of AZM.

Knowledge Graph

Similar Paper

Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing ofPseudomonas aeruginosaand Attenuates ChronicP. aeruginosaLung Infection inCftr<sup>−</sup><sup>/</sup><sup>−</sup>Mice
Antimicrobial Agents and Chemotherapy 2007.0
Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants
Antimicrobial Agents and Chemotherapy 2009.0
Ribosome Protection Prevents Azithromycin-Mediated Quorum-Sensing Modulation and Stationary-Phase Killing of Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2007.0
Azithromycin Alters Macrophage Phenotype and Pulmonary Compartmentalization during Lung Infection withPseudomonas
Antimicrobial Agents and Chemotherapy 2010.0
Subinhibitory Concentrations of Azithromycin Decrease Nontypeable Haemophilus influenzae Biofilm Formation and Diminish Established Biofilms
Antimicrobial Agents and Chemotherapy 2008.0
Macrolide Antibiotic-Mediated Downregulation of MexAB-OprM Efflux Pump Expression in Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2008.0
Azithromycin Selectively Reduces Tumor Necrosis Factor Alpha Levels in Cystic Fibrosis Airway Epithelial Cells
Antimicrobial Agents and Chemotherapy 2007.0
Glycosylation increases the anti-QS as well as anti-biofilm and anti-adhesion ability of the cyclo (L-Trp-L-Ser) against Pseudomonas aeruginosa
European Journal of Medicinal Chemistry 2022.0
2-Heptyl-4-hydroxyquinoline <i>N</i>-oxide, an antistaphylococcal agent produced by <i>Pseudomonas aeruginosa</i>
Journal of Antimicrobial Chemotherapy 1992.0
Potent Irreversible Inhibitors of LasR Quorum Sensing in Pseudomonas aeruginosa
ACS Medicinal Chemistry Letters 2015.0