Functionalized 3-benzylidene-indolin-2-ones: Inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity

Bioorganic & Medicinal Chemistry
2009.0

Abstract

Functionalized benzylidene-indolin-2-ones are widely associated with antiproliferative activity. The scaffold is not normally associated with chemoprevention in spite of the presence of a nitrogen-linked Michael acceptor moiety that may predispose members to induction of NQO1, a widely used biomarker of chemopreventive potential. To investigate this possibility, we have synthesized and evaluated a series of functionalized 3-benzylidene-indolin-2-ones for induction of NQO1 in murine Hepa1c1c7 cells as well as antiproliferative activity against two human cancer cell lines (MCF-7, HCT116). The benzylideneindolinones were found to be good inducers of NQO1 activity, with 85% of test compounds able to increase basal NQO1 activity by more than twofold at concentrations of 10 microM. By contrast, fewer compounds (11%) tested at the same concentration were able to reduce cell viability by more than 50%. Structure activity relationships showed that the nitrogen linked Michael acceptor moiety was an essential requirement for both activities. This common feature notwithstanding, substitution of the 3-benzylidene-indolin-2-one core structure affected NQO1 induction and antiproliferative activities in dissimilar ways, underscoring different structural requirements for these two activities. Nonetheless, promising compounds (10, 42, 45-48) were identified that combine selective induction of NQO1 with potent antiproliferative activity. A potential advantage of such agents would be the ability to provide added protection to normal cells by the up-regulation of NQO1 and other phase II enzymes while simultaneously targeting neoplastic cells.

Knowledge Graph

Similar Paper

Functionalized 3-benzylidene-indolin-2-ones: Inducers of NAD(P)H-quinone oxidoreductase 1 (NQO1) with antiproliferative activity
Bioorganic & Medicinal Chemistry 2009.0
Synthesis and Evaluation of 3-Aryloxymethyl-1,2-dimethylindole-4,7-diones as Mechanism-Based Inhibitors of NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Activity
Journal of Medicinal Chemistry 2007.0
Design, synthesis, and biological evaluation of NAD(P)H: Quinone oxidoreductase (NQO1)-targeted oridonin prodrugs possessing indolequinone moiety for hypoxia-selective activation
European Journal of Medicinal Chemistry 2017.0
Novel quinolinequinone antitumor agents: Structure-metabolism studies with NAD(P)H:quinone oxidoreductase (NQO1)
Bioorganic & Medicinal Chemistry Letters 1999.0
Design and synthesis of NAD(P)H: Quinone oxidoreductase (NQO1)-activated prodrugs of 23-hydroxybetulinic acid with enhanced antitumor properties
European Journal of Medicinal Chemistry 2022.0
Functionalized aurones as inducers of NAD(P)H:quinone oxidoreductase 1 that activate AhR/XRE and Nrf2/ARE signaling pathways: Synthesis, evaluation and SAR
European Journal of Medicinal Chemistry 2010.0
Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities
European Journal of Medicinal Chemistry 2018.0
Chemopreventive flavonoids from Millettia pulchra Kurz var-laxior (Dunn) Z.Wei (Yulangsan) function as Michael reaction acceptors
Bioorganic & Medicinal Chemistry Letters 2015.0
Quinone Reductase Induction as a Biomarker for Cancer Chemoprevention
Journal of Natural Products 2006.0
Antitumor activity and COMPARE analysis of bis-indole derivatives
Bioorganic & Medicinal Chemistry 2010.0