Synthesis and Antiplasmodial Activity of Aminoalkylamino-Substituted Neocryptolepine Derivatives

Journal of Medicinal Chemistry
2009.0

Abstract

A series of chloro- and aminoalkylamino-substituted neocryptolepine (5-methyl-5H-indolo[2,3-b]quinoline) derivatives were synthesized and evaluated as antiplasmodial agents. The evaluation also included cytotoxicity (MRC5 cells), inhibition of beta-hematin formation, and DNA interactions (DNA-methyl green assay). Introduction of aminoalkylamino chains increased the antiplasmodial activity of the neocryptolepine core substantially. The most efficient compounds showed antiplasmodial activities in the nanomolar range. N(1),N(1)-Diethyl-N(4)-(5-methyl-5H-indolo[2,3-b]quinolin-8-yl)pentane-1,4-diamine 11c showed an IC(50) of 0.01 microM and a selectivity index of 1800.

Knowledge Graph

Similar Paper

Synthesis and Antiplasmodial Activity of Aminoalkylamino-Substituted Neocryptolepine Derivatives
Journal of Medicinal Chemistry 2009.0
Synthesis and antimalarial testing of neocryptolepine analogues: Addition of ester function in SAR study of 2,11-disubstituted indolo[2,3-b]quinolines
European Journal of Medicinal Chemistry 2013.0
Synthesis and in Vitro Antimalarial Testing of Neocryptolepines: SAR Study for Improved Activity by Introduction and Modifications of Side Chains at C2 and C11 on Indolo[2,3-b]quinolines
Journal of Medicinal Chemistry 2013.0
Cryptolepine analogues containing basic aminoalkyl side-chains at C-11: Synthesis, antiplasmodial activity, and cytotoxicity
Bioorganic & Medicinal Chemistry Letters 2008.0
Synthesis, Cytotoxicity, and Antiplasmodial and Antitrypanosomal Activity of New Neocryptolepine Derivatives
Journal of Medicinal Chemistry 2002.0
Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents
Journal of Medicinal Chemistry 2001.0
Isoneocryptolepine, a Synthetic Indoloquinoline Alkaloid, as an Antiplasmodial Lead Compound
Journal of Natural Products 2005.0
Neocryptolepine analogues containing N-substituted side-chains at C-11: synthesis and antischistosomicidal activity
Medicinal Chemistry Research 2012.0
Synthesis, β-haematin inhibition, and in vitro antimalarial testing of isocryptolepine analogues: SAR study of indolo[3,2-c]quinolines with various substituents at C2, C6, and N11
Bioorganic & Medicinal Chemistry 2014.0
Structure–activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues
Bioorganic & Medicinal Chemistry 2009.0