Identification of inhibitors of N5-carboxyaminoimidazole ribonucleotide synthetase by high-throughput screening

Bioorganic & Medicinal Chemistry
2009.0

Abstract

The increasing risk of drug-resistant bacterial infections indicates that there is a growing need for new and effective antimicrobial agents. One promising, but unexplored area in antimicrobial drug design is de novo purine biosynthesis. Recent research has shown that de novo purine biosynthesis in microbes is different from that in humans. The differences in the pathways are centered around the synthesis of 4-carboxyaminoimidazole ribonucleotide (CAIR) which requires the enzyme N(5)-carboxyaminoimidazole ribonucleotide (N(5)-CAIR) synthetase. Humans do not require and have no homologs of this enzyme. Unfortunately, no studies aimed at identifying small-molecule inhibitors of N(5)-CAIR synthetase have been published. To remedy this problem, we have conducted high-throughput screening (HTS) against Escherichia coliN(5)-CAIR synthetase using a highly reproducible phosphate assay. HTS of 48,000 compounds identified 14 compounds that inhibited the enzyme. The hits identified could be classified into three classes based on chemical structure. Class I contains compounds with an indenedione core. Class II contains an indolinedione group, and Class III contains compounds that are structurally unrelated to other inhibitors in the group. We determined the Michaelis-Menten kinetics for five compounds representing each of the classes. Examination of compounds belonging to Class I indicates that these compounds do not follow normal Michaelis-Menten kinetics. Instead, these compounds inhibit N(5)-CAIR synthetase by reacting with the substrate AIR. Kinetic analysis indicates that the Class II family of compounds are non-competitive with both AIR and ATP. One compound in Class III is competitive with AIR but uncompetitive with ATP, whereas the other is non-competitive with both substrates. Finally, these compounds display no inhibition of human AIR carboxylase:SAICAR synthetase indicating that these agents are selective inhibitors of N(5)-CAIR synthetase.

Knowledge Graph

Similar Paper

Identification of inhibitors of N5-carboxyaminoimidazole ribonucleotide synthetase by high-throughput screening
Bioorganic & Medicinal Chemistry 2009.0
Identification of Bacillus anthracis PurE inhibitors with antimicrobial activity
Bioorganic & Medicinal Chemistry 2015.0
Reactions Catalyzed by 5-Aminoimidazole Ribonucleotide Carboxylases from Escherichia coli and Gallus gallus: A Case for Divergent Catalytic Mechanisms?
Biochemistry 1994.0
Effect of a Chemical Modification on the Hydrated Adenosine Intermediate Produced by Adenosine Deaminase and a Model Reaction for a Potential Mechanism of Action of 5-Aminoimidazole Ribonucleotide Carboxylase
Journal of Medicinal Chemistry 1997.0
Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Thymidylate synthetase inhibitors. Synthesis of N-substituted 5-aminomethyl-2'-deoxyuridine 5'-phosphates
Journal of Medicinal Chemistry 1977.0
Structure-based Design, Synthesis, Evaluation, and Crystal Structures of Transition State Analogue Inhibitors of Inosine Monophosphate Cyclohydrolase
Journal of Biological Chemistry 2007.0
Discovery of 5-Substituted Pyrrolo[2,3-d]pyrimidine Antifolates as Dual-Acting Inhibitors of Glycinamide Ribonucleotide Formyltransferase and 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase in De Novo Purine Nucleotide Biosynthesis: Implications of Inhibiting 5-Aminoimidazole-4-carboxamide Ribonucleotide Formyltransferase to AMPK Activation and Antitumor Activity
Journal of Medicinal Chemistry 2013.0
Antibacterial Agent Discovery Using Thymidylate Synthase Biolibrary Screening
Journal of Medicinal Chemistry 2006.0
Novel Dihydrofolate Reductase Inhibitors. Structure-Based versus Diversity-Based Library Design and High-Throughput Synthesis and Screening
Journal of Medicinal Chemistry 2003.0