Synthesis, cytotoxic activity, DNA topoisomerase-II inhibition, molecular modeling and structure–activity relationship of 9-anilinothiazolo[5,4-b]quinoline derivatives

Bioorganic & Medicinal Chemistry
2009.0

Abstract

Some novel 9-anilinothiazolo[5,4-b]quinoline derivatives were synthesized and their cytotoxic activities were examined. The inhibition of some of the most active compounds over human topoisomerase II (Topo II) activity was assessed with the kDNA decatenation assay. The novel compounds differ in the substituents attached to the anilino ring, a dialkylamino alkylamino group, a saturated heterocyclic moiety, a methylthio group at position 2 and a fluorine atom present or absent at 7-position. According to the data, compounds with a diethylaminopropylamino group and a chlorine atom at 4'-position of the anilino ring were the most cytotoxic. The molecular models of all compounds indicated a correlation between hydrophobicity and cytotoxic activity although the direction and magnitude of the dipole moment also had a significant influence on its cytotoxicity. The 2-dialkylaminoalkylamino substituent is flexible and is known to facilitate the crossing of cell membranes; thus, this last barrier may be a limiting step in the mechanisms mediating the cytotoxicity. On the other hand, the activity of 2-methylthio derivatives seems to rely more on the electronic effects brought about by the substitution of the aniline ring. The synthesis, cytotoxicity against cancer cell lines, in vitro inhibition of human topoisomerase II, molecular modeling and the preliminary analysis of structure-activity relationships are presented.

Knowledge Graph

Similar Paper

Synthesis, cytotoxic activity, DNA topoisomerase-II inhibition, molecular modeling and structure–activity relationship of 9-anilinothiazolo[5,4-b]quinoline derivatives
Bioorganic & Medicinal Chemistry 2009.0
Synthesis, cytotoxic evaluation, and DNA binding of novel thiazolo[5,4-b]quinoline derivatives
Bioorganic & Medicinal Chemistry 2008.0
Substituted 2-arylquinazolinones: Design, synthesis, and evaluation of cytotoxicity and inhibition of topoisomerases
European Journal of Medicinal Chemistry 2015.0
Design, Synthesis, and Cytotoxic Evaluation of Acyl Derivatives of 3-Aminonaphtho[2,3-b]thiophene-4,9-dione, a Quinone-Based System
Journal of Medicinal Chemistry 2011.0
Synthesis of 1-/2-substituted-[1,2,3]triazolo[4,5-g]phthalazine-4,9-diones and evaluation of their cytotoxicity and topoisomerase II inhibition
Bioorganic & Medicinal Chemistry 2008.0
Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors
European Journal of Medicinal Chemistry 2018.0
Synthesis, Cytotoxicity, DNA Interaction, and Topoisomerase II Inhibition Properties of Novel Indeno[2,1-c]quinolin-7-one and Indeno[1,2-c]isoquinolin-5,11-dione Derivatives
Journal of Medicinal Chemistry 2008.0
Design and synthesis of 4-amino-2-phenylquinazolines as novel topoisomerase I inhibitors with molecular modeling
Bioorganic & Medicinal Chemistry 2011.0
Discovery of a 2,4-diphenyl-5,6-dihydrobenzo(h)quinolin-8-amine derivative as a novel DNA intercalating topoisomerase IIα poison
European Journal of Medicinal Chemistry 2021.0
Synthesis of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship
Bioorganic & Medicinal Chemistry 2010.0