Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors

European Journal of Medicinal Chemistry
2009.0

Abstract

A series of hydroxamic acid-based histone deacetylase (HDAC) inhibitors were designed on the basis of a model of the HDAC2 binding site and synthesized. They are characterized by a cinnamic spacer, capped with a substituted phenyl group. Modifications of the spacer are also reported. In an in vitro assay with the isoenzyme HDAC2, a good correlation of the activity with the docking energy was found. In human ovarian carcinoma IGROV-1 cells, selected compounds produced significant acetylation of p53 and alpha-tubulin. Most compounds showed an antiproliferative activity comparable to that of SAHA. At equitoxic concentrations, the tested compounds were more effective than SAHA in inducing apoptotic cell death. Compounds selected for in vivo evaluation exhibited a significant antitumor activity on three tumor models at well tolerated doses, thus suggesting a good therapeutic index.

Knowledge Graph

Similar Paper

Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors
European Journal of Medicinal Chemistry 2009.0
Design, synthesis and preliminary bioactivity studies of 1,2-dihydrobenzo[d]isothiazol-3-one-1,1-dioxide hydroxamic acid derivatives as novel histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Biphenyl-4-yl-acrylohydroxamic acids: Identification of a novel indolyl-substituted HDAC inhibitor with antitumor activity
European Journal of Medicinal Chemistry 2016.0
Design and synthesis of a new generation of substituted purine hydroxamate analogs as histone deacetylase inhibitors
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis and preliminary bioactivity evaluations of substituted quinoline hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
Bioorganic & Medicinal Chemistry 2015.0
N-Hydroxy-1,2-disubstituted-1H-benzimidazol-5-yl acrylamides as novel histone deacetylase inhibitors: Design, synthesis, SAR studies, and in vivo antitumor activity
Bioorganic & Medicinal Chemistry Letters 2009.0
Design, synthesis, and preliminary bioactivity studies of substituted purine hydroxamic acid derivatives as novel histone deacetylase (HDAC) inhibitors
MedChemComm 2014.0
Development of Tetrahydroisoquinoline-Based Hydroxamic Acid Derivatives: Potent Histone Deacetylase Inhibitors with Marked in Vitro and in Vivo Antitumor Activities
Journal of Medicinal Chemistry 2011.0
2-Aroylindoles and 2-Aroylbenzofurans with N-Hydroxyacrylamide Substructures as a Novel Series of Rationally Designed Histone Deacetylase Inhibitors
Journal of Medicinal Chemistry 2007.0
Development of hydroxamate-based histone deacetylase inhibitors containing 1,2,4-oxadiazole moiety core with antitumor activities
Bioorganic & Medicinal Chemistry Letters 2019.0