Design of a New Histamine H3 Receptor Antagonist Chemotype: (3aR,6aR)-5-Alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrroles, Synthesis, and Structure−Activity Relationships

Journal of Medicinal Chemistry
2009.0

Abstract

A new histamine H3 receptor (H3R) antagonist chemotype 1 was designed by combining key pharmacophoric elements from two different precursor structural series and then simplifying and optimizing the resulting combined structural features. First, analogues were made based on a previously identified conessine-based H3R antagonist series. While the first analogues 11 and 15 showed no antagonistic activity to H3R, the mere addition of a key moiety found in the reference compound 7 (ABT-239) elevated the series to high potency at H3R. The hybrid structure (16b) was judged too synthetically demanding to enable an extensive SAR study, thus forcing a strategy to simplify the chemical structure. The resulting (3aR,6aR)-5-alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrrole series proved to be highly potent, as exemplified by 17a having a human H3 K(i) of 0.54 nM, rat H3 K(i) of 4.57 nM, and excellent pharmacokinetics (PK) profile in rats (oral bioavailability of 39% and t(1/2) of 2.4 h).

Knowledge Graph

Similar Paper

Design of a New Histamine H<sub>3</sub> Receptor Antagonist Chemotype: (3aR,6aR)-5-Alkyl-1-aryl-octahydropyrrolo[3,4-b]pyrroles, Synthesis, and Structure−Activity Relationships
Journal of Medicinal Chemistry 2009.0
A new family of H3 receptor antagonists based on the natural product Conessine
Bioorganic &amp; Medicinal Chemistry Letters 2008.0
The Alkaloid Conessine and Analogues as Potent Histamine H<sub>3</sub>Receptor Antagonists
Journal of Medicinal Chemistry 2008.0
Heterocyclic replacement of the central phenyl core of diamine-based histamine H3 receptor antagonists
European Journal of Medicinal Chemistry 2009.0
Identification and profiling of 3,5-dimethyl-isoxazole-4-carboxylic acid [2-methyl-4-((2S,3′S)-2-methyl-[1,3′]bipyrrolidinyl-1′-yl)phenyl] amide as histamine H3 receptor antagonist for the treatment of depression
Bioorganic &amp; Medicinal Chemistry Letters 2013.0
Acidic elements in histamine H3 receptor antagonists
Bioorganic &amp; Medicinal Chemistry Letters 2010.0
Synthesis and Structure−Activity Relationships of Conformationally Constrained Histamine H<sub>3</sub> Receptor Agonists
Journal of Medicinal Chemistry 2003.0
Nature-inspired pyrrolo[2,3-d]pyrimidines targeting the histamine H3 receptor
Bioorganic &amp; Medicinal Chemistry 2019.0
Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands
European Journal of Medicinal Chemistry 2018.0
Synthesis and in Vitro Pharmacology of a Series of New Chiral Histamine H<sub>3</sub>-Receptor Ligands:  2-(RandS)-Amino-3-(1H-imidazol-4(5)-yl)propyl Ether Derivatives
Journal of Medicinal Chemistry 1999.0