Role of Lon, an ATP-Dependent Protease Homolog, in Resistance of Pseudomonas aeruginosa to Ciprofloxacin

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

With few novel antimicrobials in the pharmaceutical pipeline, resistance to the current selection of antibiotics represents a significant therapeutic challenge. Microbial persistence in subinhibitory antibiotic environments has been proposed to contribute to the development of resistance. Pseudomonas aeruginosa cultures pretreated with subinhibitory concentrations of ciprofloxacin were found to exhibit an adaptive resistance phenotype when cultures were subsequently exposed to suprainhibitory ciprofloxacin concentrations. Microarray experiments revealed candidate genes involved in such adaptive resistance. Screening of 10,000 Tn5-luxCDABE mutants identified several mutants with increased or decreased ciprofloxacin susceptibilities, including mutants in PA1803, a close homolog of the ATP-dependent lon protease, which were found to exhibit > or = 4-fold-increased susceptibilities to ciprofloxacin and other fluoroquinolones, but not to gentamicin or imipenem, as well as a characteristic elongated morphology. Complementation of the lon mutant restored wild-type antibiotic susceptibility and cell morphology. Expression of the lon mutant, as monitored through a luciferase reporter fusion, was found to increase over time in the presence of subinhibitory ciprofloxacin concentrations. The data are consistent with the hypothesis that the induction of Lon by ciprofloxacin is involved in adaptive resistance.

Knowledge Graph

Similar Paper

Role of Lon, an ATP-Dependent Protease Homolog, in Resistance of Pseudomonas aeruginosa to Ciprofloxacin
Antimicrobial Agents and Chemotherapy 2007.0
Complex Ciprofloxacin Resistome Revealed by Screening a Pseudomonas aeruginosa Mutant Library for Altered Susceptibility
Antimicrobial Agents and Chemotherapy 2008.0
The Development of Ciprofloxacin Resistance in Pseudomonas aeruginosa Involves Multiple Response Stages and Multiple Proteins
Antimicrobial Agents and Chemotherapy 2010.0
Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump
Antimicrobial Agents and Chemotherapy 2008.0
Combined Inactivation of lon and ycgE Decreases Multidrug Susceptibility by Reducing the Amount of OmpF Porin in Escherichia coli
Antimicrobial Agents and Chemotherapy 2009.0
Increased Genome Instability in Escherichia coli lon Mutants: Relation to Emergence of Multiple-Antibiotic-Resistant (Mar) Mutants Caused by Insertion Sequence Elements and Large Tandem Genomic Amplifications
Antimicrobial Agents and Chemotherapy 2007.0
rpoN Gene of Pseudomonas aeruginosa Alters Its Susceptibility to Quinolones and Carbapenems
Antimicrobial Agents and Chemotherapy 2007.0
Azithromycin in Pseudomonas aeruginosa Biofilms: Bactericidal Activity and Selection of nfxB Mutants
Antimicrobial Agents and Chemotherapy 2009.0
Semimechanistic Pharmacokinetic-Pharmacodynamic Model with Adaptation Development for Time-Kill Experiments of Ciprofloxacin against Pseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0
Genetic Determinants Involved in the Susceptibility of Pseudomonas aeruginosa to β-Lactam Antibiotics
Antimicrobial Agents and Chemotherapy 2010.0