Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells

Antimicrobial Agents and Chemotherapy
2007.0

Abstract

Most antibiotics with bactericidal activity require that the bacteria be actively dividing to produce rapid killing. However, in many infections, such as endocarditis, prosthetic joint infections, and infected embedded catheters, the bacteria divide slowly or not at all. Daptomycin is a lipopeptide antibiotic with a distinct mechanism of action that targets the cytoplasmic membrane of gram-positive organisms, including Staphylococcus aureus. Daptomycin is rapidly bactericidal against exponentially growing bacteria (a 3-log reduction in 60 min). The objectives of this study were to determine if daptomycin is bactericidal against nondividing S. aureus and to quantify the extent of the bactericidal activity. In high-inoculum methicillin-sensitive S. aureus cultures in stationary phase (10(10) CFU/ml), daptomycin displayed concentration-dependent bactericidal activity, requiring 32 micro/ml to achieve a 3-log reduction. In a study comparing several antibiotics at 100 microg/ml, daptomycin demonstrated faster bactericidal activity than nafcillin, ciprofloxacin, gentamicin, and vancomycin. In experiments where bacterial cell growth was halted by the metabolic inhibitor carbonyl cyanide m-chlorophenylhydrazone or erythromycin, daptomycin (10 microg/ml) achieved the bactericidal end point (a 3-log reduction) within 2 h. In contrast, ciprofloxacin (10 microg/ml) did not produce bactericidal activity. Daptomycin (2 microg/ml) remained bactericidal against cold-arrested S. aureus, which was protected from the actions of ciprofloxacin and nafcillin. The data presented here suggest that, in contrast to that of other classes of antibiotics, the bactericidal activity of daptomycin does not require cell division or active metabolism, most likely as a consequence of its direct action on the bacterial membrane.

Knowledge Graph

Similar Paper

Bactericidal Action of Daptomycin against Stationary-Phase and Nondividing Staphylococcus aureus Cells
Antimicrobial Agents and Chemotherapy 2007.0
Daptomycin Exerts Bactericidal Activity without Lysis of Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
Rapid Bactericidal Activity of Daptomycin against Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Peritonitis in Mice as Measured with Bioluminescent Bacteria
Antimicrobial Agents and Chemotherapy 2007.0
The action mechanism of daptomycin
Bioorganic & Medicinal Chemistry 2016.0
Daptomycin Is Effective in Treatment of Experimental Endocarditis Due to Methicillin-Resistant and Glycopeptide-Intermediate Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
Structure–Activity Relationships of Daptomycin Lipopeptides
Journal of Medicinal Chemistry 2020.0
Antimicrobial Activities of Daptomycin, Vancomycin, and Oxacillin in Human Monocytes and of Daptomycin in Combination with Gentamicin and/or Rifampin in Human Monocytes and in Broth against Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2007.0
Establishing the Structure–Activity Relationship of Daptomycin
ACS Medicinal Chemistry Letters 2020.0
Activity of Daptomycin Alone and in Combination with Rifampin and Gentamicin against Staphylococcus aureus Assessed by Time-Kill Methodology
Antimicrobial Agents and Chemotherapy 2007.0
Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding
Antimicrobial Agents and Chemotherapy 2008.0