Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore

Bioorganic & Medicinal Chemistry
2009.0

Abstract

The voltage-gated sodium channel remains a rich area for the development of novel blockers. In this study we used comparative molecular field analysis (CoMFA), a ligand-based design strategy, to generate a 3D model based upon local anesthetics, hydantoins, and alpha-hydroxyphenylamides to elucidate a SAR for their binding site in the neuronal sodium channel. Correlation by partial least squares (PLS) analysis of in vitro sodium channel binding activity (expressed as pIC(50)) and the CoMFA descriptor column generated a final non-cross-validated model with q(2)=0.926 for the training set. The CoMFA steric and electrostatic maps described a binding site predominately hydrophobic in nature. This model was then used to design and predict a series of novel sodium channel blockers that utilized overlapping structural features of phenytoin, hydroxy amides, and the local anesthetic lidocaine. Synthesis and evaluation of these compounds for their ability to inhibit [(3)H]-batrachotoxin revealed that these compounds have potent sodium channel blockade. Furthermore, the CoMFA model was able to accurately predict the binding of these compounds to the neuronal sodium channel. Synthesis and subsequent sodium channel evaluation of compound 37 (predicted IC(50)=7 microM, actual IC(50)=6 microM), established that novel compounds based on overlapping regions of phenytoin and lidocaine are better binders to the sodium channel than phenytoin itself (IC(50)=40 microM).

Knowledge Graph

Similar Paper

Ligand-based design and synthesis of novel sodium channel blockers from a combined phenytoin–lidocaine pharmacophore
Bioorganic & Medicinal Chemistry 2009.0
Comparative Molecular Field Analysis of Hydantoin Binding to the Neuronal Voltage-Dependent Sodium Channel
Journal of Medicinal Chemistry 1999.0
A highly predictive 3D-QSAR model for binding to the voltage-gated sodium channel: Design of potent new ligands
Bioorganic & Medicinal Chemistry 2014.0
N-Aryl-2,6-dimethylbenzamides, a New Generation of Tocainide Analogues as Blockers of Skeletal Muscle Voltage-Gated Sodium Channels
Journal of Medicinal Chemistry 2014.0
Synthesis and Structure−Activity Relationships of 6,7-Benzomorphan Derivatives as Use-Dependent Sodium Channel Blockers for the Treatment of Stroke
Journal of Medicinal Chemistry 2002.0
Effects of log P and Phenyl Ring Conformation on the Binding of 5-Phenylhydantoins to the Voltage-Dependent Sodium Channel
Journal of Medicinal Chemistry 1997.0
Quantitative Analysis of the Structural Requirements for Blockade of the N-Methyl-<scp>d</scp>-aspartate Receptor at the Phencyclidine Binding Site
Journal of Medicinal Chemistry 1998.0
3D QSAR Analyses-Guided Rational Design of Novel Ligands for the (α4)<sub>2</sub>(β2)<sub>3</sub> Nicotinic Acetylcholine Receptor
Journal of Medicinal Chemistry 2003.0
Synthesis and pharmacological evaluation of phenylacetamides as sodium-channel blockers
Journal of Medicinal Chemistry 1994.0
Toward a Pharmacophore for Drugs Inducing the Long QT Syndrome:  Insights from a CoMFA Study of HERG K<sup>+</sup> Channel Blockers
Journal of Medicinal Chemistry 2002.0