Discovery of 4-(4-(2-((5-Hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl)piperazin-1-yl)quinolin-8-ol and Its Analogues as Highly Potent Dopamine D2/D3 Agonists and as Iron Chelator: In Vivo Activity Indicates Potential Application in Symptomatic and Neuroprotective Therapy for Parkinson’s Disease

Journal of Medicinal Chemistry
2010.0

Abstract

The role of iron in the pathogenesis of Parkinson's disease (PD) has been implicated strongly because of generation of oxidative stress leading to dopamine cell death. In our overall goal to develop bifunctional/multifunctional drugs, we designed dopamine D2/D3 agonist molecules with a capacity to bind to iron. Binding assays were carried out with HEK-293 cells expressing either D2 or D3 receptor with tritiated spiperone to evaluate inhibition constants (K(i)). Functional activity of selected compounds was carried out with GTPgammaS binding assay. SAR results identified compounds (+)-19a and (-)-19b as two potent agonists for both D2 and D3 receptors (EC(50) (GTPgammaS); D2 = 4.51 and 1.69 nM and D3 = 1.58 and 0.74 nM for (-)-19b and (+)-19a, respectively). In vitro complexation studies with 19b demonstrated efficient chelation with iron. Furthermore, the deoxyribose assay with 19b demonstrated potent antioxidant activity. In PD animal model study, (-)-19b exhibited potent in vivo activity in reversing locomotor activity in reserpinized rats and also in producing potent rotational activity in 6-OHDA lesioned rats. This reports initial development of unique lead molecules that might find potential use in symptomatic and neuroprotective treatment of PD.

Knowledge Graph

Similar Paper

Discovery of 4-(4-(2-((5-Hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)(propyl)amino)ethyl)piperazin-1-yl)quinolin-8-ol and Its Analogues as Highly Potent Dopamine D2/D3 Agonists and as Iron Chelator: In Vivo Activity Indicates Potential Application in Symptomatic and Neuroprotective Therapy for Parkinson’s Disease
Journal of Medicinal Chemistry 2010.0
Development of (S)-N<sup>6</sup>-(2-(4-(Isoquinolin-1-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]-thiazole-2,6-diamine and Its Analogue as a D3 Receptor Preferring Agonist: Potent in Vivo Activity in Parkinson’s Disease Animal Models
Journal of Medicinal Chemistry 2010.0
Structure–Activity Relationship Study ofN<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Development of Highly Selective D3 Dopamine Receptor Agonists along with a Highly Potent D2/D3 Agonist and Their Pharmacological Characterization
Journal of Medicinal Chemistry 2012.0
Structural Modifications of Neuroprotective Anti-Parkinsonian (−)-N6-(2-(4-(Biphenyl-4-yl)piperazin-1-yl)-ethyl)-N6-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine (D-264): An Effort toward the Improvement of in Vivo Efficacy of the Parent Molecule
Journal of Medicinal Chemistry 2014.0
Bioisosteric Heterocyclic Versions of 7-{[2-(4-Phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronaphthalen-2-ol: Identification of Highly Potent and Selective Agonists for Dopamine D3 Receptor with Potent in Vivo Activity
Journal of Medicinal Chemistry 2008.0
Development of a Highly Potent D<sub>2</sub>/D<sub>3</sub> Agonist and a Partial Agonist from Structure–Activity Relationship Study of N<sup>6</sup>-(2-(4-(1H-Indol-5-yl)piperazin-1-yl)ethyl)-N<sup>6</sup>-propyl-4,5,6,7-tetrahydrobenzo[d]thiazole-2,6-diamine Analogues: Implication in the Treatment of Parkinson’s Disease
Journal of Medicinal Chemistry 2015.0
Adamantyl- and other polycyclic cage-based conjugates of desferrioxamine B (DFOB) for treating iron-mediated toxicity in cell models of Parkinson’s disease
Bioorganic &amp; Medicinal Chemistry Letters 2017.0
Novel multifunctional dopamine D 2 /D 3 receptors agonists with potential neuroprotection and anti-alpha synuclein protein aggregation properties
Bioorganic &amp; Medicinal Chemistry 2016.0
Bivalent dopamine agonists with co-operative binding and functional activities at dopamine D2 receptors, modulate aggregation and toxicity of alpha synuclein protein
Bioorganic &amp; Medicinal Chemistry 2023.0
Synthesis and SAR study of a novel series of dopamine receptor agonists
Bioorganic &amp; Medicinal Chemistry 2014.0