Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines

Bioorganic & Medicinal Chemistry
2010.0

Abstract

A new series of 2,4-diphenyl-6-aryl pyridines containing hydroxyl group(s) at the ortho, meta, or para position of the phenyl ring were synthesized, and evaluated for topoisomerase I and II inhibitory activity and cytotoxicity against several human cancer cell lines for the development of novel anticancer agents. Structure-activity relationship study revealed that the substitution of hydroxyl group(s) increased topoisomerase I and II inhibitory activity in the order of meta > para > ortho position. Substitution of hydroxyl group on the para position showed better cytotoxicity.

Knowledge Graph

Similar Paper

Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of hydroxylated 2,4-diphenyl-6-aryl pyridines
Bioorganic & Medicinal Chemistry 2010.0
Topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of dihydroxylated 2,6-diphenyl-4-aryl pyridines
Bioorganic & Medicinal Chemistry 2015.0
Dihydroxylated 2,4,6-triphenyl pyridines: Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study
European Journal of Medicinal Chemistry 2012.0
Synthesis, topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship study of 2-phenyl- or hydroxylated 2-phenyl-4-aryl-5H-indeno[1,2-b]pyridines
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, antitumor activity, and structure–activity relationship study of trihydroxylated 2,4,6-triphenyl pyridines as potent and selective topoisomerase II inhibitors
European Journal of Medicinal Chemistry 2014.0
Synthesis of 2,4-diaryl chromenopyridines and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship
European Journal of Medicinal Chemistry 2011.0
Synthesis and SAR study of new hydroxy and chloro-substituted 2,4-diphenyl 5H-chromeno[4,3-b]pyridines as selective topoisomerase IIα-targeting anticancer agents
Bioorganic & Medicinal Chemistry 2018.0
Design, synthesis, and antitumor evaluation of 2,4,6-triaryl pyridines containing chlorophenyl and phenolic moiety
European Journal of Medicinal Chemistry 2012.0
Synthesis of 2-(thienyl-2-yl or -3-yl)-4-furyl-6-aryl pyridine derivatives and evaluation of their topoisomerase I and II inhibitory activity, cytotoxicity, and structure–activity relationship
Bioorganic & Medicinal Chemistry 2010.0
A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study
European Journal of Medicinal Chemistry 2016.0