Inhibition of Mycobacterial Replication by Pyrimidines Possessing Various C-5 Functionalities and Related 2′-Deoxynucleoside Analogues Using in Vitro and in Vivo Models

Journal of Medicinal Chemistry
2010.0

Abstract

Tuberculosis (TB) has become an increasing problem since the emergence of human immunodeficiency virus and increasing appearance of drug-resistant strains. There is an urgent need to advance our knowledge and discover a new class of agents that are distinct than current therapies. Antimycobacterial activities of several 5-alkyl, 5-alkynyl, furanopyrimidines and related 2'-deoxynucleosides were investigated against Mycobacterium tuberculosis. Compounds with 5-arylalkynyl substituents (23-26, 33, 35) displayed potent in vitro antitubercular activity against Mycobacterium bovis and Mycobacterium tuberculosis. The in vivo activity of 5-(2-pyridylethynyl)-uracil (26) and its 2'-deoxycytidine analogue, 5-(2-pyridylethynyl)-2'-deoxycytidine (35), was assessed in BALB/c mice infected with M. tuberculosis (H37Ra). Both compounds 26 and 35 given at a dose of 50 mg/kg for 5 weeks showed promising in vivo efficacy in a mouse model, with the 2'-deoxycytidine derivative being more effective than the uracil analogue and a reference drug d-cycloserine. These data indicated that there is a significant potential in this class of compounds.

Knowledge Graph

Similar Paper

Inhibition of Mycobacterial Replication by Pyrimidines Possessing Various C-5 Functionalities and Related 2′-Deoxynucleoside Analogues Using in Vitro and in Vivo Models
Journal of Medicinal Chemistry 2010.0
Growth Inhibition of Mycobacterium bovis, Mycobacterium tuberculosis and Mycobacterium avium In Vitro:  Effect of 1-β-<scp>d</scp>-2‘-Arabinofuranosyl and 1-(2‘-Deoxy-2‘-fluoro-β-<scp>d</scp>-2‘-ribofuranosyl) Pyrimidine Nucleoside Analogs
Journal of Medicinal Chemistry 2007.0
Design and Studies of Novel 5-Substituted Alkynylpyrimidine Nucleosides as Potent Inhibitors of Mycobacteria
Journal of Medicinal Chemistry 2005.0
Inhibition of Mycobacterium tuberculosis strains H37Rv and MDR MS-115 by a new set of C5 modified pyrimidine nucleosides
Bioorganic &amp; Medicinal Chemistry 2013.0
Antimycobacterial activities of 5-alkyl (or halo)-3′-substituted pyrimidine nucleoside analogs
Bioorganic &amp; Medicinal Chemistry Letters 2012.0
Investigation of C-5 alkynyl (alkynyloxy or hydroxymethyl) and/or N-3 propynyl substituted pyrimidine nucleoside analogs as a new class of antimicrobial agents
Bioorganic &amp; Medicinal Chemistry 2016.0
3′-Bromo Analogues of Pyrimidine Nucleosides as a New Class of Potent Inhibitors ofMycobacterium tuberculosis
Journal of Medicinal Chemistry 2010.0
Studies on acyclic pyrimidines as inhibitors of mycobacteria
Bioorganic &amp; Medicinal Chemistry 2007.0
Design and synthesis of novel 5-alkynyl pyrimidine nucleosides derivatives: Influence of C-6-substituent on antituberculosis activity
Bioorganic &amp; Medicinal Chemistry Letters 2021.0
Discovery of novel 5-(ethyl or hydroxymethyl) analogs of 2′-‘up’ fluoro (or hydroxyl) pyrimidine nucleosides as a new class of Mycobacterium tuberculosis, Mycobacterium bovis and Mycobacterium avium inhibitors
Bioorganic &amp; Medicinal Chemistry 2012.0