Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Scandinavia is considered a region with a low prevalence of antimicrobial resistance. However, the number of multidrug-resistant (MDR) Gram-negative bacteria is increasing, including metallo-beta-lactamase (MBL)-producing Pseudomonas aeruginosa. In this study MBL-producing P. aeruginosa isolates identified in Norway (n = 4) and Sweden (n = 9) from 1999 to 2007 were characterized. Two international clonal complexes (CC), CC111 (n = 8) and CC235 (n = 2), previously associated with MBL-producing isolates, were dominant. CC111 isolates (ST111/229; serotype O12; bla(VIM-2)) included clonally related isolates identified in Skåne County, Sweden (n = 6), and two isolates associated with importation from Greece and Denmark. In all CC111 isolates, bla(VIM-2) was located in integron In59.2 or In59 variants. The two CC235 isolates (ST235/ST230; serotype O11; bla(VIM-4)) were imported from Greece and Cyprus, were possibly clonally related, and carried bla(VIM-4) in two different integron structures. Three isolates imported from Ghana (ST233; serotype O6; bla(VIM-2)), Tunisia (ST654; serotype O11; bla(VIM-2)), and Thailand (ST260; serotype O6; bla(IMP-14)) were clonally unrelated. ST233 was part of a new CC (CC233) that included other MBL-producing isolates, while ST654 could also be part of a new CC associated with MBL producers. In the isolates imported from Ghana and Tunisia, bla(VIM-2) was part of unusual integron structures lacking the 3' conserved segment and associated with transposons. The bla(VIM) gene was found to be located on the chromosome in all isolates. Known risk factors for acquisition of MBL were reported for all patients except one. The findings suggest that both import of successful international clones and local clonal expansion contribute to the emergence of MBL-producing P. aeruginosa in Scandinavia.

Knowledge Graph

Similar Paper

Molecular Epidemiology of Metallo-β-Lactamase-Producing Pseudomonas aeruginosa Isolates from Norway and Sweden Shows Import of International Clones and Local Clonal Expansion
Antimicrobial Agents and Chemotherapy 2010.0
Molecular Epidemiology of Outbreak-Related Pseudomonas aeruginosa Strains Carrying the Novel Variant bla <sub>VIM-17</sub> Metallo-β-Lactamase Gene
Antimicrobial Agents and Chemotherapy 2009.0
First Organisms with Acquired Metallo-β-Lactamases (IMP-13, IMP-22, and VIM-2) Reported in Austria
Antimicrobial Agents and Chemotherapy 2009.0
Carbapenem Resistance among Pseudomonas aeruginosa Strains from India: Evidence for Nationwide Endemicity of Multiple Metallo-β-Lactamase Clones (VIM-2, -5, -6, and -11 and the Newly Characterized VIM-18)
Antimicrobial Agents and Chemotherapy 2009.0
Molecular Epidemiology and Mechanisms of Carbapenem Resistance in Pseudomonas aeruginosa Isolates from Spanish Hospitals
Antimicrobial Agents and Chemotherapy 2007.0
bla <sub>VIM-2</sub> -Harboring Integrons Isolated in India, Russia, and the United States Arise from an Ancestral Class 1 Integron Predating the Formation of the 3′ Conserved Sequence
Antimicrobial Agents and Chemotherapy 2007.0
First Countrywide Survey of Acquired Metallo-β-Lactamases in Gram-Negative Pathogens in Italy
Antimicrobial Agents and Chemotherapy 2008.0
Characterization of the New Metallo-β-Lactamase VIM-13 and Its Integron-Borne Gene from a Pseudomonas aeruginosa Clinical Isolate in Spain
Antimicrobial Agents and Chemotherapy 2008.0
First Survey of Metallo-β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa in a German University Hospital
Antimicrobial Agents and Chemotherapy 2010.0
VIM-15 and VIM-16, Two New VIM-2-Like Metallo-β-Lactamases in Pseudomonas aeruginosa Isolates from Bulgaria and Germany
Antimicrobial Agents and Chemotherapy 2008.0