Evaluation of N-substitution in 6,7-benzomorphan compounds

Bioorganic & Medicinal Chemistry
2010.0

Abstract

6,7-benzomorphan derivatives, exhibiting different mu, delta, and kappa receptor selectivity profiles depending on the N-substituent, represent a useful skeleton for the synthesis of new and better analgesic agents. In this work, an aromatic ring and/or alkyl residues have been used with an N-propanamide or N-acetamide spacer for the synthesis of a new series of 5,9-dimethyl-2'-hydroxy-6,7-benzomorphan derivatives (12-22). Data obtained by competition binding assays showed that the mu opioid receptor seems to prefer an interaction with the 6,7-benzomorphan ligands having an N-substituent with a propanamide spacer and less hindered amide. Highly stringent features are required for delta receptor interaction, while an N-acetamide spacer and/or bulkier amide could preferentially lead to kappa receptor selectivity. In the propanamide series, compound 12 (named LP1) displayed high mu affinity (Ki=0.83 nM), good delta affinity (Ki=29 nM) and low affinity for the kappa receptor (Ki=110 nM), with a selectivity ratio delta/mu and kappa/mu of 35.1 and 132.5, respectively. Further, in the adenylyl cyclase assay, LP1 displayed a mu/delta agonist profile, with IC50 values of 4.8 and 12 nM at the mu and delta receptors, respectively. The antinociceptive potency of LP1 in the tail-flick test after sc administration in rat was comparable with the potency of morphine (ED50=2.03 and 2.7 mg/kg, respectively), and was totally reversed by naloxone. LP1, possessing a mu/delta agonist profile, could represent a lead in further developing benzomorphan-based ligands with potent in vivo analgesic activity and a reduced tendency to induce side effects.

Knowledge Graph

Similar Paper

Evaluation of N-substitution in 6,7-benzomorphan compounds
Bioorganic & Medicinal Chemistry 2010.0
Evaluation of N-substituent structural variations in opioid receptor profile of LP1
Bioorganic & Medicinal Chemistry 2016.0
Development of novel LP1-based analogues with enhanced delta opioid receptor profile
Bioorganic & Medicinal Chemistry 2017.0
An LP1 analogue, selective MOR agonist with a peculiar pharmacological profile, used to scrutiny the ligand binding domain
Bioorganic & Medicinal Chemistry 2016.0
Novel N-Substituted Benzomorphan-Based Compounds: From MOR-Agonist/DOR-Antagonist to Biased/Unbiased MOR Agonists
ACS Medicinal Chemistry Letters 2020.0
(2S)-N-2-methoxy-2-phenylethyl-6,7-benzomorphan compound (2S-LP2): Discovery of a biased mu/delta opioid receptor agonist
European Journal of Medicinal Chemistry 2019.0
Synthesis and Biological Evaluation of 14-Alkoxymorphinans. 18. N-Substituted 14-Phenylpropyloxymorphinan-6-ones with Unanticipated Agonist Properties:  Extending the Scope of Common Structure−Activity Relationships
Journal of Medicinal Chemistry 2003.0
Highly selective .kappa.-opioid analgesics. 3. Synthesis and structure-activity relationships of novel N-[2-(1-pyrrolidinyl)-4- or -5-substituted cyclohexyl]arylacetamide derivatives
Journal of Medicinal Chemistry 1990.0
Synthesis, Binding Affinity, and Functional in Vitro Activity of 3-Benzylaminomorphinan and 3-Benzylaminomorphine Ligands at Opioid Receptors
Journal of Medicinal Chemistry 2012.0
N-Phenethyl Substitution in 14-Methoxy-N-methylmorphinan-6-ones Turns Selective µ Opioid Receptor Ligands into Dual µ/δ Opioid Receptor Agonists
Scientific Reports 2020.0