Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Ethambutol, together with a macrolide, is the backbone for treatment of disseminated Mycobacterium avium disease. However, at the standard dose of 15 mg/kg of body weight/day, ethambutol efficacy is limited. In addition, susceptibility breakpoints have consistently failed to predict clinical outcome. We performed dose-effect studies with extracellular M. avium as well as with bacilli within human macrophages. The maximal kill rate (E(max)) for ethambutol against extracellular bacilli was 5.54 log(10) CFU/ml, compared to 0.67 log(10) CFU/ml for intracellular M. avium, after 7 days of exposure. Thus, extracellular assays demonstrated high efficacy. We created a hollow-fiber system model of intracellular M. avium and performed microbial pharmacokinetic-pharmacodynamic studies using pharmacokinetics similar to those of ethambutol for humans. The E(max) in the systems was 0.79 log(10) CFU/ml with 7 days of daily therapy, so the kill rates approximated those encountered in patients treated with ethambutol monotherapy. Ratio of peak concentration to MIC (C(max)/MIC) was linked to microbial kill rate. The C(max)/MIC ratio needed to achieve the 90% effective concentration (EC(90)) in serum was 1.23, with a calculated intramacrophage C(max)/MIC ratio of 13. In 10,000 patient Monte Carlo simulations, doses of 15, 50, and 75 mg/kg achieved the EC(90) in 35.50%, 76.81%, and 86.12% of patients, respectively. Therefore, ethambutol doses of >or=50 mg/kg twice a week would be predicted to be better than current doses of 15 mg/kg for treatment of disseminated M. avium disease. New susceptibility breakpoints and critical concentrations of 1 to 2 mg/liter were identified for the determination of ethambutol-resistant M. avium in Middlebrook broth. Given that the modal MIC of clinical isolates is around 2 mg/liter, most isolates should be considered ethambutol resistant.

Knowledge Graph

Similar Paper

Ethambutol Optimal Clinical Dose and Susceptibility Breakpoint Identification by Use of a Novel Pharmacokinetic-Pharmacodynamic Model of Disseminated Intracellular Mycobacterium avium
Antimicrobial Agents and Chemotherapy 2010.0
Moxifloxacin Pharmacokinetics/Pharmacodynamics and Optimal Dose and Susceptibility Breakpoint Identification for Treatment of DisseminatedMycobacterium aviumInfection
Antimicrobial Agents and Chemotherapy 2010.0
Concentration-Dependent Mycobacterium tuberculosis Killing and Prevention of Resistance by Rifampin
Antimicrobial Agents and Chemotherapy 2007.0
ATP Synthase Inhibition of Mycobacterium avium Is Not Bactericidal
Antimicrobial Agents and Chemotherapy 2009.0
Population Modeling and Monte Carlo Simulation Study of the Pharmacokinetics and Antituberculosis Pharmacodynamics of Rifampin in Lungs
Antimicrobial Agents and Chemotherapy 2009.0
Pharmacodynamic Modeling of Aminoglycosides against Pseudomonas aeruginosa and Acinetobacter baumannii : Identifying Dosing Regimens To Suppress Resistance Development
Antimicrobial Agents and Chemotherapy 2008.0
Isoniazid Bactericidal Activity and Resistance Emergence: Integrating Pharmacodynamics and Pharmacogenomics To Predict Efficacy in Different Ethnic Populations
Antimicrobial Agents and Chemotherapy 2007.0
Pharmacodynamics of Minocycline against Staphylococcus aureus in an In Vitro Pharmacokinetic Model
Antimicrobial Agents and Chemotherapy 2008.0
Moxifloxacin, Ofloxacin, Sparfloxacin, and Ciprofloxacin against Mycobacterium tuberculosis : Evaluation of In Vitro and Pharmacodynamic Indices That Best Predict In Vivo Efficacy
Antimicrobial Agents and Chemotherapy 2007.0
The Arabinosyltransferase EmbC Is Inhibited by Ethambutol in Mycobacterium tuberculosis
Antimicrobial Agents and Chemotherapy 2009.0