Comparative Study of the Susceptibilities of Major Epidemic Clones of Methicillin-Resistant Staphylococcus aureus to Oxacillin and to the New Broad-Spectrum Cephalosporin Ceftobiprole

Antimicrobial Agents and Chemotherapy
2008.0

Abstract

Multidrug-resistant strains of Staphylococcus aureus continue to increase in frequency worldwide, both in hospitals and in the community, raising serious problems for the chemotherapy of staphylococcal disease. Ceftobiprole (BPR; BAL9141), the active constituent of the prodrug ceftobiprole medocaril (BAL5788), is a new cephalosporin which was already shown to have powerful activity against a number of bacterial pathogens, including S. aureus. In an effort to test possible limits to the antibacterial spectrum and efficacy of BPR, we examined the susceptibilities of the relatively few pandemic methicillin-resistant S. aureus (MRSA) clones that are responsible for the great majority of cases of staphylococcal disease worldwide. We also included in the tests the highly oxacillin-resistant subpopulations that are present with low frequencies in the cultures of these clones. Such subpopulations may represent a natural reservoir from which MRSA strains with decreased susceptibility to BPR may emerge in the future. We also tested the efficacy of BPR against MRSA strains with reduced susceptibility to vancomycin and against MRSA strains carrying the enterococcal vancomycin resistance gene complex. BPR was shown to be uniformly effective against all these resistant MRSA strains, and the mechanism of superb antimicrobial activity correlated with the strikingly increased affinity of the cephalosporin against penicillin-binding protein 2A, the protein product of the antibiotic resistance determinant mecA.

Knowledge Graph

Similar Paper

Comparative Study of the Susceptibilities of Major Epidemic Clones of Methicillin-Resistant Staphylococcus aureus to Oxacillin and to the New Broad-Spectrum Cephalosporin Ceftobiprole
Antimicrobial Agents and Chemotherapy 2008.0
Pharmacodynamic Characterization of Ceftobiprole in Experimental Pneumonia Caused by Phenotypically Diverse Staphylococcus aureus Strains
Antimicrobial Agents and Chemotherapy 2008.0
Binding of Ceftobiprole and Comparators to the Penicillin-Binding Proteins of Escherichia coli , Pseudomonas aeruginosa , Staphylococcus aureus , and Streptococcus pneumoniae
Antimicrobial Agents and Chemotherapy 2007.0
Effects of Ceftobiprole and Oxacillin on mecA Expression in Methicillin-Resistant Staphylococcus aureus Clinical Isolates
Antimicrobial Agents and Chemotherapy 2010.0
Activities of Ceftobiprole and Other Cephalosporins against Extracellular and Intracellular (THP-1 Macrophages and Keratinocytes) Forms of Methicillin-Susceptible and Methicillin-ResistantStaphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Affinity of Ceftobiprole for Penicillin-Binding Protein 2b in Streptococcus pneumoniae Strains with Various Susceptibilities to Penicillin
Antimicrobial Agents and Chemotherapy 2010.0
In Vivo Activity of Ceftobiprole in Murine Skin Infections Due toStaphylococcus aureusandPseudomonas aeruginosa
Antimicrobial Agents and Chemotherapy 2010.0
Interaction of Ceftobiprole with the Low-Affinity PBP 5 of Enterococcus faecium
Antimicrobial Agents and Chemotherapy 2010.0
Salvage cryotherapy for recurrent prostate cancer after radiation failure: current status and future perspectives
Therapy 2008.0
A mec A -Negative Strain of Methicillin-Resistant S taphylococcus aureus with High-Level β-Lactam Resistance Contains Mutations in Three Genes
Antimicrobial Agents and Chemotherapy 2010.0