Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents that Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance

Journal of Medicinal Chemistry
2010.0

Abstract

Two classes of molecules were designed and synthesized based on a 6-CH(3) cyclopenta[d]pyrimidine scaffold and a pyrrolo[2,3-d]pyrimidine scaffold. The pyrrolo[2,3-d]pyrimidines were synthesized by reacting ethyl 2-cyano-4,4-diethoxybutanoate and acetamidine, which in turn was chlorinated and reacted with the appropriate anilines to afford 1 and 2. The cyclopenta[d]pyrimidines were obtained from 3-methyladapic acid, followed by reaction with acetamidine to afford the cyclopenta[d]pyrimidine scaffold. Chlorination and reaction with appropriate anilines afforded (±)-3·HCl-(±)-7·HCl. Compounds 1 and (±)-3·HCl had potent antiproliferative activities in the nanomolar range. Compound (±)-3·HCl is significantly more potent than 1. Mechanistic studies showed that 1 and (±)-3·HCl cause loss of cellular microtubules, inhibit the polymerization of purified tubulin, and inhibit colchicine binding. Modeling studies show interactions of these compounds within the colchicine site. The identification of these new inhibitors that can also overcome clinically relevant mechanisms of drug resistance provides new scaffolds for colchicine site agents.

Knowledge Graph

Similar Paper

Synthesis and Discovery of Water-Soluble Microtubule Targeting Agents that Bind to the Colchicine Site on Tubulin and Circumvent Pgp Mediated Resistance
Journal of Medicinal Chemistry 2010.0
Simple monocyclic pyrimidine analogs as microtubule targeting agents binding to the colchicine site
Bioorganic & Medicinal Chemistry 2023.0
Synthesis of N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells
Bioorganic & Medicinal Chemistry 2013.0
Heterocyclic-Fused Pyrimidines as Novel Tubulin Polymerization Inhibitors Targeting the Colchicine Binding Site: Structural Basis and Antitumor Efficacy
Journal of Medicinal Chemistry 2018.0
Synthesis and mechanism of action of novel pyrimidinyl pyrazole derivatives possessing antiproliferative activity
Bioorganic & Medicinal Chemistry Letters 2002.0
Structure–Activity Relationship and in Vitro and in Vivo Evaluation of the Potent Cytotoxic Anti-microtubule Agent N-(4-Methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium Chloride and Its Analogues As Antitumor Agents
Journal of Medicinal Chemistry 2013.0
Novel pyrazolo[4,3-d]pyrimidine microtubule targeting agents (MTAs): Synthesis, structure–activity relationship, in vitro and in vivo evaluation as antitumor agents
Bioorganic & Medicinal Chemistry Letters 2021.0
Design, synthesis, and bioevaluation of pyrazolo[1,5-a]pyrimidine derivatives as tubulin polymerization inhibitors targeting the colchicine binding site with potent anticancer activities
European Journal of Medicinal Chemistry 2020.0
Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities Are Predicted for C-2 Analogues in the Colchicine Site
ACS Medicinal Chemistry Letters 2012.0
Novel chemotypes targeting tubulin at the colchicine binding site and unbiasing P-glycoprotein
European Journal of Medicinal Chemistry 2017.0