Variations in Amino Acid Composition of Antisense Peptide-Phosphorodiamidate Morpholino Oligomer Affect Potency against Escherichia coli In Vitro and In Vivo

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

The potency of antisense peptide-phosphorodiamidate morpholino oligomers (PPMOs) was improved by varying the peptide composition. An antisense phosphorodiamidate morpholino oligomer (PMO) complementary to the mRNA of the essential gene acpP (which encodes the acyl carrier protein required for lipid biosynthesis) in Escherichia coli was conjugated to the 5' ends of various cationic membrane-penetrating peptides. Each peptide had one of three repeating sequence motifs: C-N-N (motif 1), C-N (motif 2), or C-N-C (motif 3), where C is a cationic residue and N is a nonpolar residue. Variations in the cationic residues included arginine, lysine, and ornithine (O). Variations in the nonpolar residues included phenylalanine, valine, beta-alanine (B), and 6-aminohexanoic acid (X). The MICs of the PPMOs varied from 0.625 to >80 microM (about 3 to 480 microg/ml). Three of the most potent were the (RX)(6)B-, (RXR)(4)XB-, and (RFR)(4)XB-AcpP PMOs, which were further tested in mice infected with E. coli. The (RXR)(4)XB-AcpP PMO was the most potent of the three conjugates tested in mice. The administration of 30 microg (1.5 mg/kg of body weight) (RXR)(4)XB-AcpP PMO at 15 min postinfection reduced CFU/ml in blood by 10(2) to 10(3) within 2 to 12 h compared to the numbers in water-treated controls. All mice treated with 30 microg/dose of (RXR)(4)XB-AcpP PMO survived infection, whereas all water-treated mice died 12 h postinfection. The reduction in CFU/ml in blood was proportional to the dose of PPMO from 30 to 300 microg/ml. In summary, the C-N-C motif was more effective than the other two motifs, arginine was more effective than lysine or ornithine, phenylalanine was more effective than 6-aminohexanoic acid in vitro but not necessarily in vivo, and (RXR)(4)XB-AcpP PMO reduced bacterial infection and promoted survival at clinically relevant doses.

Knowledge Graph

Similar Paper

Variations in Amino Acid Composition of Antisense Peptide-Phosphorodiamidate Morpholino Oligomer Affect Potency against Escherichia coli In Vitro and In Vivo
Antimicrobial Agents and Chemotherapy 2009.0
Inhibition of Intracellular Growth of Salmonella enterica Serovar Typhimurium in Tissue Culture by Antisense Peptide-Phosphorodiamidate Morpholino Oligomer
Antimicrobial Agents and Chemotherapy 2009.0
Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae
European Journal of Medicinal Chemistry 2019.0
Synthesis and antimicrobial activity of amino acid and peptide derivatives of mycophenolic acid
European Journal of Medicinal Chemistry 2018.0
A Morpholino Oligomer Targeting Highly Conserved Internal Ribosome Entry Site Sequence Is Able To Inhibit Multiple Species of Picornavirus
Antimicrobial Agents and Chemotherapy 2008.0
De Novo Cyclic Pseudopeptides Containing Aza-β<sup>3</sup>-amino Acids Exhibiting Antimicrobial Activities
Journal of Medicinal Chemistry 2012.0
Antimicrobial activity of rationally designed amino terminal modified peptides
Bioorganic &amp; Medicinal Chemistry Letters 2007.0
Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli
Journal of Medicinal Chemistry 2014.0
Spermine-Conjugated Short Proline-Rich Lipopeptides as Broad-Spectrum Intracellular Targeting Antibacterial Agents
Journal of Medicinal Chemistry 2022.0
Oncocin (VDKPPYLPRPRPPRRIYNR-NH<sub>2</sub>): A Novel Antibacterial Peptide Optimized against Gram-Negative Human Pathogens
Journal of Medicinal Chemistry 2010.0