Pharmacodynamics of Tigecycline against Phenotypically Diverse Staphylococcus aureus Isolates in a Murine Thigh Model

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Tigecycline is a currently marketed antimicrobial agent with activity against resistant gram-positive cocci, including methicillin-resistant Staphylococcus aureus (MRSA). Despite the proven efficacy of tigecycline in the treatment of infections caused by these pathogens, questions remain as to the exposure-response relationship best associated with its efficacy. The purpose of this study was to define this relationship against seven distinct S. aureus isolates by using a neutropenic murine thigh model. Single-dose pharmacokinetics were evaluated, and free drug exposures were calculated after determination of protein binding. Doses of 1.56 to 400 mg/kg of body weight divided 1 to 8 times daily were administered against two methicillin-susceptible S. aureus isolates, two hospital-associated MRSA (HA-MRSA) isolates, and three community-associated (CA-MRSA) isolates. Tigecycline pharmacokinetics were best described by a two-compartment model, with a mean half-life of 9.9 h. Protein binding was dose dependent (range, 92.9 to 81.2%). MICs were 0.25 microg/ml for all isolates, except for HA-MRSA 56 (MIC, 0.5 microg/ml) and CA-MRSA 156 (MIC, 0.125 microg/ml). Tigecycline displayed efficacy against all isolates, producing maximum decreases in log(10) numbers of CFU/ml of 1.8 to 2.3 from 0-h controls. Mean correlation coefficients for free-drug (f) concentration exposures derived from the parameters fT>MIC (the percentage of time during which the concentration of f remains above the MIC), fC(max)/MIC (the ratio of the maximum concentration of f to the MIC), and fAUC/MIC (the ratio of the area under the concentration-time curve of f to the MIC) were 0.622, 0.812, and 0.958, respectively. Values for the mean effective exposure index at 80% (EI(80)) and 50% (EI(50)) for fAUC/MIC were 5.4 microg/ml (range, 2.8 to 13 microg/ml) and 2.6 microg/ml (range, 0.6 to 5.1 microg/ml), respectively. Experiments with nonneutropenic mice infected with CA-MRSA 156 resulted in maximum kill at all fAUC/MIC exposures tested (1.8 to 8.8 microg/ml). The fAUC/MIC ratio is the pharmacodynamic parameter most predictive of tigecycline efficacy. Furthermore, the presence of a functioning immune system markedly reduces the required exposure.

Knowledge Graph

Similar Paper

Pharmacodynamics of Tigecycline against Phenotypically Diverse Staphylococcus aureus Isolates in a Murine Thigh Model
Antimicrobial Agents and Chemotherapy 2009.0
Pharmacodynamic Profile of Tigecycline against Methicillin-Resistant Staphylococcus aureus in an Experimental Pneumonia Model
Antimicrobial Agents and Chemotherapy 2009.0
In Vivo Pharmacodynamic Profile of Tigecycline against Phenotypically Diverse Escherichia coli and Klebsiella pneumoniae Isolates
Antimicrobial Agents and Chemotherapy 2009.0
Exposure-Response Analyses of Tigecycline Efficacy in Patients with Complicated Skin and Skin-Structure Infections
Antimicrobial Agents and Chemotherapy 2007.0
Pharmacodynamics of Minocycline against Staphylococcus aureus in an In Vitro Pharmacokinetic Model
Antimicrobial Agents and Chemotherapy 2008.0
Pharmacodynamic Characterization of Ceftobiprole in Experimental Pneumonia Caused by Phenotypically Diverse Staphylococcus aureus Strains
Antimicrobial Agents and Chemotherapy 2008.0
Postantibiotic Effect of Tigecycline against 14 Gram-Positive Organisms
Antimicrobial Agents and Chemotherapy 2009.0
Tissue Penetration and Pharmacokinetics of Tigecycline in Diabetic Patients with Chronic Wound Infections Described by Using In Vivo Microdialysis
Antimicrobial Agents and Chemotherapy 2010.0
Tigecycline Population Pharmacokinetics in Patients with Community- or Hospital-Acquired Pneumonia
Antimicrobial Agents and Chemotherapy 2010.0
Influence of Tigecycline on Expression of Virulence Factors in Biofilm-Associated Cells of Methicillin-Resistant Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2010.0