Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in Staphylococcus aureus : Evidence for Multiple Resistance Mechanisms

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

The mechanism(s) of daptomycin (DAP) resistance (DAPr) is incompletely defined. Thickened cell walls (CWs) acting as either a mechanical barrier or an affinity trap for DAP have been purported to be a major contributor to the DAPr phenotype. To this end, we studied an isogenic set of methicillin-resistant Staphylococcus aureus (MRSA) isolates (pulsotype USA 300) from the bloodstream of a DAP-treated patient with endocarditis in which serial strains exhibited increasing DAPr. Of interest, the DAPr isolate differed from its parental strain in several parameters, including acquisition of a point mutation within the putative synthase domain of the mprF gene in association with enhanced mprF expression, increased synthesis of lysyl-phosphotidylglycerol, an enhanced positive envelope charge, and reduced DAP surface binding. Transmission electron microscopy (TEM) revealed no significant increases in CW thickness in the two DAPr isolates (MRSA 11/21 and REF2145) compared with that in the DAP-susceptible (DAPs) parental strain, MRSA 11/11. The rates of Triton X-100-induced autolysis were also identical for the strain set. Furthermore, among six additional clinically isolated DAPs/DAPr S. aureus strain pairs, only three DAPr isolates exhibited CWs significantly thicker than those of the respective DAPs parent. These data confirm that CW thickening is neither universal to DAPr S. aureus nor sufficient to yield the DAPr phenotype among S. aureus strains.

Knowledge Graph

Similar Paper

Cell Wall Thickening Is Not a Universal Accompaniment of the Daptomycin Nonsusceptibility Phenotype in Staphylococcus aureus : Evidence for Multiple Resistance Mechanisms
Antimicrobial Agents and Chemotherapy 2010.0
Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2009.0
Regulation of mprF in Daptomycin-Nonsusceptible Staphylococcus aureus Strains
Antimicrobial Agents and Chemotherapy 2009.0
Daptomycin Nonsusceptibility in Staphylococcus aureus with Reduced Vancomycin Susceptibility Is Independent of Alterations in MprF
Antimicrobial Agents and Chemotherapy 2007.0
Failures in Clinical Treatment of Staphylococcus aureus Infection with Daptomycin Are Associated with Alterations in Surface Charge, Membrane Phospholipid Asymmetry, and Drug Binding
Antimicrobial Agents and Chemotherapy 2008.0
Serial Daptomycin Selection Generates Daptomycin-NonsusceptibleStaphylococcus aureusStrains with a Heterogeneous Vancomycin-Intermediate Phenotype
Antimicrobial Agents and Chemotherapy 2008.0
Genetic Analysis of Factors Affecting Susceptibility ofBacillus subtilisto Daptomycin
Antimicrobial Agents and Chemotherapy 2009.0
An RpoB Mutation Confers Dual Heteroresistance to Daptomycin and Vancomycin in Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2010.0
Daptomycin Exerts Bactericidal Activity without Lysis of Staphylococcus aureus
Antimicrobial Agents and Chemotherapy 2008.0
The action mechanism of daptomycin
Bioorganic & Medicinal Chemistry 2016.0