Effect of Rifampin, a Potent Inducer of Drug-Metabolizing Enzymes, on the Pharmacokinetics of Raltegravir

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Raltegravir is a human immunodeficiency virus type 1 integrase strand transfer inhibitor that is metabolized by glucuronidation via UGT1A1 and may be affected by inducers of UGT1A1, such as rifampin (rifampicin). Two pharmacokinetic studies were performed in healthy subjects: study 1 examined the effect of administration of 600-mg rifampin once daily on the pharmacokinetics of a single dose of 400-mg raltegravir, and study 2 examined the effect of 600-mg rifampin once daily on the pharmacokinetics of 800-mg raltegravir twice daily compared to 400-mg raltegravir twice daily without rifampin. Raltegravir coadministered with rifampin resulted in lower plasma raltegravir concentrations: in study 1, the geometric mean ratios (GMRs) and 90% confidence intervals (90% CIs) for the plasma raltegravir concentration determined 12 h postdose (C(12)), area under the concentration-time curve from 0 h to infinity (AUC(0-infinity)), and maximum concentration of drug in plasma (C(max)) (400-mg raltegravir plus rifampin/400-mg raltegravir) were 0.39 (0.30, 0.51), 0.60 (0.39, 0.91), and 0.62 (0.37, 1.04), respectively. In study 2, the GMRs and 90% CIs for raltegravir C(12), AUC(0-12), and C(max) (800-mg raltegravir plus rifampin/400-mg raltegravir) were 0.47 (0.36, 0.61), 1.27 (0.94, 1.71), and 1.62 (1.12, 2.33), respectively. Doubling the raltegravir dose to 800 mg when coadministered with rifampin therefore compensates for the effect of rifampin on raltegravir exposure (AUC(0-12)) but does not overcome the effect of rifampin on raltegravir trough concentrations (C(12)). Coadministration of rifampin and raltegravir is not contraindicated; however, caution should be used, since raltegravir trough concentrations in the presence of rifampin are likely to be at the lower limit of clinical experience.

Knowledge Graph

Similar Paper

Effect of Rifampin, a Potent Inducer of Drug-Metabolizing Enzymes, on the Pharmacokinetics of Raltegravir
Antimicrobial Agents and Chemotherapy 2009.0
Minimal Effects of Ritonavir and Efavirenz on the Pharmacokinetics of Raltegravir
Antimicrobial Agents and Chemotherapy 2008.0
Pharmacokinetics and Pharmacogenomics of Once-Daily Raltegravir and Atazanavir in Healthy Volunteers
Antimicrobial Agents and Chemotherapy 2010.0
Lack of a Clinically Important Effect of Moderate Hepatic Insufficiency and Severe Renal Insufficiency on Raltegravir Pharmacokinetics
Antimicrobial Agents and Chemotherapy 2009.0
Minimal Pharmacokinetic Interaction between the Human Immunodeficiency Virus Nonnucleoside Reverse Transcriptase Inhibitor Etravirine and the Integrase Inhibitor Raltegravir in Healthy Subjects
Antimicrobial Agents and Chemotherapy 2008.0
Effect of Concomitantly Administered Rifampin on the Pharmacokinetics and Safety of Atazanavir Administered Twice Daily
Antimicrobial Agents and Chemotherapy 2007.0
Effect of Antacids on the Pharmacokinetics of Raltegravir in Human Immunodeficiency Virus-Seronegative Volunteers
Antimicrobial Agents and Chemotherapy 2010.0
Plasma and Intracellular (Peripheral Blood Mononuclear Cells) Pharmacokinetics of Once-Daily Raltegravir (800 Milligrams) in HIV-Infected Patients
Antimicrobial Agents and Chemotherapy 2011.0
Effects of Rifampin and Multidrug Resistance Gene Polymorphism on Concentrations of Moxifloxacin
Antimicrobial Agents and Chemotherapy 2007.0
Repeated Administration of High-Dose Intermittent Rifapentine Reduces Rifapentine and Moxifloxacin Plasma Concentrations
Antimicrobial Agents and Chemotherapy 2008.0