Effects of Subinhibitory Concentrations of Antibiotics on Colonization Factor Expression by Moxifloxacin-Susceptible and Moxifloxacin-Resistant Clostridium difficile Strains

Antimicrobial Agents and Chemotherapy
2009.0

Abstract

Recent outbreaks of Clostridium difficile infection have been related to the emergence of the NAP1/027 epidemic strain. This strain demonstrates increased virulence and resistance to the C-8-methoxyfluoroquinolones gatifloxacin and moxifloxacin. These antibiotics have been implicated as major C. difficile infection-inducing agents. We investigated by real-time reverse transcription-PCR the impact of subinhibitory concentrations of ampicillin, clindamycin, ofloxacin, and moxifloxacin on the expression of genes encoding three colonization factors, the protease Cwp84, the high-molecular-weight S-layer protein, and the fibronectin-binding protein Fbp68. We have previously shown in six non-NAP1/027 moxifloxacin-susceptible strains that the presence of ampicillin or clindamycin induced an upregulation of these genes, whereas the presence of fluoroquinolones did not. The objective of this study was to analyze the expression of these genes under the same conditions in four NAP1/027 strains, one moxifloxacin susceptible and three moxifloxacin resistant. Two in vitro-selected moxifloxacin-resistant mutants were also analyzed. Moxifloxacin resistance was associated with the Thr82-->Ile substitution in GyrA in all but one of the moxifloxacin-resistant strains. The expression of cwp84 and slpA was strongly increased after culture with ampicillin or clindamycin in NAP1/027 strains. Interestingly, after culture with fluoroquinolones, the expression of cwp84 and slpA was only increased in four moxifloxacin-resistant strains, including the NAP1/027 strains and one of the in vitro-selected mutants. The overexpression of cwp84 was correlated with increased production of the protease Cwp84. The historical NAP1/027 moxifloxacin-susceptible strain and its mutant appear to be differently regulated by fluoroquinolones. Overall, fluoroquinolones appear to favor the expression of some colonization factor-encoding genes in resistant C. difficile strains. The fluoroquinolone resistance of the NAP1/027 epidemic strains could be considered an ecological advantage. This could also increase their colonization fitness and promote the infection.

Knowledge Graph

Similar Paper

Effects of Subinhibitory Concentrations of Antibiotics on Colonization Factor Expression by Moxifloxacin-Susceptible and Moxifloxacin-Resistant Clostridium difficile Strains
Antimicrobial Agents and Chemotherapy 2009.0
Effects of Exposure of Clostridium difficile PCR Ribotypes 027 and 001 to Fluoroquinolones in a Human Gut Model
Antimicrobial Agents and Chemotherapy 2009.0
Effect of Fluoroquinolone Treatment on Growth of and Toxin Production by Epidemic and Nonepidemic Clostridium difficile Strains in the Cecal Contents of Mice
Antimicrobial Agents and Chemotherapy 2007.0
Molecular Analysis of the gyrA and gyrB Quinolone Resistance-Determining Regions of Fluoroquinolone-Resistant Clostridium difficile Mutants Selected In Vitro
Antimicrobial Agents and Chemotherapy 2009.0
Clostridium difficileInfections in a Canadian Tertiary Care Hospital before and during a Regional Epidemic Associated with the BI/NAP1/027 Strain
Antimicrobial Agents and Chemotherapy 2008.0
Rifampin and Rifaximin Resistance in Clinical Isolates of Clostridium difficile
Antimicrobial Agents and Chemotherapy 2008.0
Genomewide Screening for Novel Genetic Variations Associated with Ciprofloxacin Resistance in Bacillus anthracis
Antimicrobial Agents and Chemotherapy 2010.0
In Vitro Effect of qnrA1 , qnrB1 , and qnrS1 Genes on Fluoroquinolone Activity against Isogenic Escherichia coli Isolates with Mutations in gyrA and parC
Antimicrobial Agents and Chemotherapy 2011.0
Comparative Study of the Mutant Prevention Concentrations of Moxifloxacin, Levofloxacin, and Gemifloxacin against Pneumococci
Antimicrobial Agents and Chemotherapy 2010.0
Resistance and Virulence of Pseudomonas aeruginosa Clinical Strains Overproducing the MexCD-OprJ Efflux Pump
Antimicrobial Agents and Chemotherapy 2008.0