Inhibition of Human Immunodeficiency Virus Type 1 by Triciribine Involves the Accessory Protein Nef

Antimicrobial Agents and Chemotherapy
2010.0

Abstract

Triciribine (TCN) is a tricyclic nucleoside that inhibits human immunodeficiency virus type 1 (HIV-1) replication by a unique mechanism not involving the inhibition of enzymes directly involved in viral replication. This activity requires the phosphorylation of TCN to its 5' monophosphate by intracellular adenosine kinase. New testing with a panel of HIV and simian immunodeficiency virus isolates, including low-passage-number clinical isolates and selected subgroups of HIV-1, multidrug resistant HIV-1, and HIV-2, has demonstrated that TCN has broad antiretroviral activity. It was active in cell lines chronically infected with HIV-1 in which the provirus was integrated into chromosomal DNA, thereby indicating that TCN inhibits a late process in virus replication. The selection of TCN-resistant HIV-1 isolates resulted in up to a 750-fold increase in the level of resistance to the drug. DNA sequence analysis of highly resistant isolate HIV-1(H10) found five point mutations in the HIV-1 gene nef, resulting in five different amino acid changes. DNA sequencing of the other TCN-resistant isolates identified at least one and up to three of the same mutations observed in isolate HIV-1(H10). Transfer of the mutations from TCN-resistant isolate HIV-1(H10) to wild-type virus and subsequent viral growth experiments with increasing concentrations of TCN demonstrated resistance to the drug. We conclude that TCN is a late-phase inhibitor of HIV-1 replication and that mutations in nef are necessary and sufficient for TCN resistance.

Knowledge Graph

Similar Paper

Inhibition of Human Immunodeficiency Virus Type 1 by Triciribine Involves the Accessory Protein Nef
Antimicrobial Agents and Chemotherapy 2010.0
Inhibition of Human Immunodeficiency Virus Reverse Transcriptase by Synadenol Triphosphate and Its E-Isomer
Journal of Medicinal Chemistry 2003.0
Novel Drug Resistance Pattern Associated with the Mutations K70G and M184V in Human Immunodeficiency Virus Type 1 Reverse Transcriptase
Antimicrobial Agents and Chemotherapy 2007.0
Synthesis and biological evaluation of piperidine-substituted triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors
European Journal of Medicinal Chemistry 2012.0
Tri-substituted triazoles as potent non-nucleoside inhibitors of the HIV-1 reverse transcriptase
Bioorganic & Medicinal Chemistry Letters 2006.0
Human Immunodeficiency Virus Type 1 Recombinant Reverse Transcriptase Enzymes Containing the G190A and Y181C Resistance Mutations Remain Sensitive to Etravirine
Antimicrobial Agents and Chemotherapy 2009.0
Novel Nonnucleoside Inhibitors of HIV-1 Reverse Transcriptase. 7. 8-Arylethyldipyridodiazepinones as Potent Broad-Spectrum Inhibitors of Wild-Type and Mutant Enzymes
Journal of Medicinal Chemistry 1998.0
The Nucleoside Analogue D-carba T Blocks HIV-1 Reverse Transcription
Journal of Medicinal Chemistry 2009.0
The M230L Nonnucleoside Reverse Transcriptase Inhibitor Resistance Mutation in HIV-1 Reverse Transcriptase Impairs Enzymatic Function and Viral Replicative Capacity
Antimicrobial Agents and Chemotherapy 2010.0
Combination of V106I and V179D Polymorphic Mutations in Human Immunodeficiency Virus Type 1 Reverse Transcriptase Confers Resistance to Efavirenz and Nevirapine but Not Etravirine
Antimicrobial Agents and Chemotherapy 2010.0