Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives

Bioorganic & Medicinal Chemistry Letters
2011.0

Abstract

Microtubules are dynamic structures that play a crucial role in cellular division and are recognized as an important target for cancer therapy. In search of new compounds with strong antiproliferative activity and simple molecular structure, a new series of 2-amino-3-(3',4',5'-trimethoxybenzoyl)-5-(hetero)aryl ethynyl thiophene derivatives was prepared by the Sonogashira coupling reaction of the corresponding 5-bromothiophenes with several (hetero)aryl acetylenes. When these compounds were analyzed in vitro for their inhibition of cell proliferation, the 2- and 3-thiophenyl acetylene derivatives were the most powerful compounds, both of which exerted cytostatic effects at submicromolar concentrations. In contrast, the presence of a more flexible ethyl chain between the (hetero)aryl and the 5-position of the thiophene ring resulted in significant reduction in activity relative to the 5-(hetero)aryl acetylene substituted derivatives. The effects of a selected series of compounds on cell cycle progression correlated well with their strong antiproliferative activity and inhibition of tubulin polymerization. We found that the antiproliferative effects of the most active compounds were associated with increase of the proportion of cells in the G(2)/M and sub-G(1) phases of the cell cycle.

Knowledge Graph

Similar Paper

Synthesis of novel antimitotic agents based on 2-amino-3-aroyl-5-(hetero)arylethynyl thiophene derivatives
Bioorganic & Medicinal Chemistry Letters 2011.0
Design and microwave assisted synthesis of novel 2-phenyl/2-phenylethynyl-3-aroyl thiophenes as potent antiproliferative agents
MedChemComm 2016.0
Synthesis and evaluation of tumor cell growth inhibition of methyl 3-amino-6-[(hetero)arylethynyl]thieno[3,2-b]pyridine-2-carboxylates. Structure–activity relationships, effects on the cell cycle and apoptosis
European Journal of Medicinal Chemistry 2011.0
Sulfonate Derivatives of Naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-Anthracenone as Highly Active Antimicrotubule Agents. Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization
Journal of Medicinal Chemistry 2007.0
Synthesis and biological evaluation of 2-substituted-4-(3′,4′,5′-trimethoxyphenyl)-5-aryl thiazoles as anticancer agents
Bioorganic & Medicinal Chemistry 2012.0
Synthesis and Biological Evaluation of 2-(Alkoxycarbonyl)-3-Anilinobenzo[b]thiophenes and Thieno[2,3-b]pyridines as New Potent Anticancer Agents
Journal of Medicinal Chemistry 2013.0
One-pot synthesis and biological evaluation of 2-pyrrolidinyl-4-amino-5-(3′,4′,5′-trimethoxybenzoyl)thiazole: A unique, highly active antimicrotubule agent
European Journal of Medicinal Chemistry 2011.0
Discovery and Optimization of a Series of 2-Aryl-4-Amino-5-(3′,4′,5′-trimethoxybenzoyl)Thiazoles as Novel Anticancer Agents
Journal of Medicinal Chemistry 2012.0
9-Benzylidene-naphtho[2,3-b]thiophen-4-ones as Novel Antimicrotubule AgentsSynthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization
Journal of Medicinal Chemistry 2006.0
Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents
Journal of Medicinal Chemistry 2001.0