Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors

Bioorganic & Medicinal Chemistry
2011.0

Abstract

Classical antifolates (4-7) with a tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold and a flexible and rigid benzoylglutamate were synthesized as dual thymidylate synthase (TS) and dihydrofolate reductase (DHFR) inhibitors. Oxidative aromatization of ethyl 2-amino-4-methyl-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate (±)-9 to ethyl 2-amino-4-methyl-1-benzothiophene-3-carboxylate 10 with 10% Pd/C was a key synthetic step. Compounds with 2-CH₃ substituents inhibited human (h) TS (IC₅₀ =0.26-0.8 μM), but not hDHFR. Substitution of the 2-CH₃ with a 2-NH₂ increases hTS inhibition by more than 10-fold and also affords excellent hDHFR inhibition (IC₅₀ = 0.09-0.1 μM). This study shows that the tricyclic benzo[4,5]thieno[2,3-d]pyrimidine scaffold is highly conducive to single hTS or dual hTS-hDHFR inhibition depending on the 2-position substituents. The X-ray crystal structures of 6 and 7 with hDHFR reveal, for the first time, that tricyclics 6 and 7 bind with the benzo[4,5]thieno[2,3-d]pyrimidine ring in the folate binding mode with the thieno S mimicking the 4-amino of methotrexate.

Knowledge Graph

Similar Paper

Design, synthesis, biological evaluation and X-ray crystal structure of novel classical 6,5,6-tricyclic benzo[4,5]thieno[2,3-d]pyrimidines as dual thymidylate synthase and dihydrofolate reductase inhibitors
Bioorganic & Medicinal Chemistry 2011.0
Design, Synthesis, and X-ray Crystal Structure of Classical and Nonclassical 2-Amino-4-oxo-5-substituted-6-ethylthieno[2,3-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2009.0
Potent Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors: Classical and Nonclassical 2-Amino-4-oxo-5-arylthio-substituted-6-methylthieno[2,3-d]pyrimidine Antifolates
Journal of Medicinal Chemistry 2008.0
Design, Synthesis, and Biological Evaluation of Classical and Nonclassical 2-Amino-4-oxo-5-substituted-6-methylpyrrolo[3,2-d]pyrimidines as Dual Thymidylate Synthase and Dihydrofolate Reductase Inhibitors
Journal of Medicinal Chemistry 2008.0
Dual Inhibitors of Thymidylate Synthase and Dihydrofolate Reductase as Antitumor Agents:  Design, Synthesis, and Biological Evaluation of Classical and Nonclassical Pyrrolo[2,3-d]pyrimidine Antifolates
Journal of Medicinal Chemistry 2006.0
Synthesis of N-{4-[(2,4-Diamino-5-methyl-4,7-dihydro-3H- pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid and N-{4-[(2-Amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin- 6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid as Dual Inhibitors of Dihydrofolate Reductase and Thymidylate Synthase and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2005.0
2,4-Diamino-5-methyl-6-substituted arylthio-furo[2,3-d]pyrimidines as novel classical and nonclassical antifolates as potential dual thymidylate synthase and dihydrofolate reductase inhibitors
Bioorganic &amp; Medicinal Chemistry 2010.0
Benzoyl Ring Halogenated Classical 2-Amino-6-methyl-3,4-dihydro-4-oxo-5-substituted Thiobenzoyl-7H-pyrrolo[2,3-d]pyrimidine Antifolates as Inhibitors of Thymidylate Synthase and as Antitumor Agents
Journal of Medicinal Chemistry 2004.0
Design, Synthesis, and Biological Activities of Classical N-{4-[2-(2-Amino-4-ethylpyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl}-<scp>l</scp>-glutamic Acid and Its 6-Methyl Derivative as Potential Dual Inhibitors of Thymidylate Synthase and Dihydrofolate Reductase and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2003.0
Design, Synthesis, and X-ray Crystal Structure of a Potent Dual Inhibitor of Thymidylate Synthase and Dihydrofolate Reductase as an Antitumor Agent
Journal of Medicinal Chemistry 2000.0