Identification of SQ609 as a lead compound from a library of dipiperidines

Bioorganic & Medicinal Chemistry Letters
2011.0

Abstract

We recently reported that compounds created around a dipiperidine scaffold demonstrated activity against Mycobacterium tuberculosis (Mtb) (Bogatcheva, E.; Hanrahan, C.; Chen, P.; Gearhart, J.; Sacksteder, K.; Einck, L.; Nacy, C.; Protopopova, M. Bioorg. Med. Chem. Lett.2010, 20, 201). To optimize the dipiperidine compound series and to select a lead compound to advance into preclinical studies, we evaluated the structure-activity relationship (SAR) of our proprietary libraries. The (piperidin-4-ylmethyl)piperidine scaffold was an essential structural element required for antibacterial activity. Based on SAR, we synthesized a focused library of 313 new dipiperidines to delineate additional structural features responsible for antitubercular activity. Thirty new active compounds with MIC 10-20 μg/ml on Mtb were identified, but none was better than the original hits of this series, SQ609, SQ614, and SQ615. In Mtb-infected macrophages in vitro, SQ609 and SQ614 inhibited more than 90% of intracellular bacterial growth at 4 μg/ml; SQ615 was toxic to these cells. In mice infected with Mtb, weight loss was completely prevented by SQ609, but not SQ614, and SQ609 had a prolonged therapeutic effect, extended by 10-15 days, after cessation of therapy. Based on in vitro and in vivo antitubercular activity, SQ609 was identified as the best-in-class dipiperidine compound in the series.

Knowledge Graph

Similar Paper

Identification of SQ609 as a lead compound from a library of dipiperidines
Bioorganic & Medicinal Chemistry Letters 2011.0
Identification of New Diamine Scaffolds with Activity against Mycobacterium tuberculosis
Journal of Medicinal Chemistry 2006.0
Design, synthesis and evaluation of novel molecules with a diphenyl ether nucleus as potential antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2012.0
Discovery of Tetrahydropyrazolopyrimidine Carboxamide Derivatives As Potent and Orally Active Antitubercular Agents
ACS Medicinal Chemistry Letters 2013.0
Synthesis and evaluation of anti-tubercular activity of 6-(4-substitutedpiperazin-1-yl) phenanthridine analogues
European Journal of Medicinal Chemistry 2014.0
Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents
European Journal of Medicinal Chemistry 2014.0
Studies on substituted benzo[h]quinazolines, benzo[g]indazoles, pyrazoles, 2,6-diarylpyridines as anti-tubercular agents
Bioorganic & Medicinal Chemistry Letters 2013.0
Synthesis and evaluation of 4′,5′-dihydrospiro[piperidine-4,7′-thieno[2,3-c]pyran] analogues against both active and dormant Mycobacterium tuberculosis
Bioorganic & Medicinal Chemistry 2018.0
4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity
Journal of Medicinal Chemistry 2014.0
Synthesis and evaluation of (S,S)-N,N′-bis-[3-(2,2′,6,6′-tetramethylbenzhydryloxy)-2-hydroxy-propyl]-ethylenediamine (S2824) analogs with anti-tuberculosis activity
Bioorganic & Medicinal Chemistry Letters 2009.0