UDP-glucuronosyltransferases and clinical drug-drug interactions

Pharmacology & Therapeutics
2005.0

Abstract

UDP-glucuronosyltransferase (UGT) enzymes catalyze the conjugation of various endogenous substances (e.g., bilirubin) and exogenous compounds (e.g., drugs). The human UGT superfamily is comprised of 2 families (UGT1 and UGT2) and 3 subfamilies (UGT1A, UGT2A, and UGT2B). Many of the individual UGT enzymes are expressed not only in liver but also in extrahepatic tissues, where the extent of glucuronidation can be substantial. Several others (e.g., UGT1A7, UGT1A8, and UGT1A10) are expressed only in extrahepatic tissues. The molecular regulation of UGT enzyme is still not fully understood, but various transcription factors appear to play a regulatory role. The expression of individual UGT enzymes is subject to genetic polymorphism and these enzymes can be inhibited or induced by xenobiotics. Experimental evidence in humans indicates that the glucuronidation of acetaminophen, codeine, zidovudine, carbamazepine, lorazepam, and propafenone can influenced by specific interacting drugs. In contrast, the glucuronidation of diflunisal, morphine, naproxen, and temazepam is not affected appreciably by the drugs investigated to date. In general, UGT-mediated human drug interaction studies are difficult to interpret. The factors that complicate the interpretation of this type of drug interaction data are discussed.

Knowledge Graph

Similar Paper

UDP-glucuronosyltransferases and clinical drug-drug interactions
Pharmacology & Therapeutics 2005.0
Human UDP-Glucuronosyltransferases: Metabolism, Expression, and Disease
Annual Review of Pharmacology and Toxicology 2000.0
Human UDP-Glucuronosyltransferase Isoforms Involved in Haloperidol Glucuronidation and Quantitative Estimation of Their Contribution
Drug Metabolism and Disposition 2012.0
Correlation between Bilirubin Glucuronidation and Estradiol-3-Gluronidation in the Presence of Model UDP-Glucuronosyltransferase 1A1 Substrates/Inhibitors
Drug Metabolism and Disposition 2011.0
In Vitro Investigation of Human UDP-Glucuronosyltransferase Isoforms Responsible for Tacrolimus Glucuronidation: Predominant Contribution of UGT1A4
Drug Metabolism and Disposition 2011.0
Diabetes Mellitus Reduces Activity of Human UDP-Glucuronosyltransferase 2B7 in Liver and Kidney Leading to Decreased Formation of Mycophenolic Acid Acyl-Glucuronide Metabolite
Drug Metabolism and Disposition 2011.0
Glucuronides as Potential Anionic Substrates of Human Cytochrome P450 2C8 (CYP2C8)
Journal of Medicinal Chemistry 2017.0
Glucuronidation of Edaravone by Human Liver and Kidney Microsomes: Biphasic Kinetics and Identification of UGT1A9 as the Major UDP-Glucuronosyltransferase Isoform
Drug Metabolism and Disposition 2012.0
Quantitative Prediction of Human Intestinal Glucuronidation Effects on Intestinal Availability of UDP-Glucuronosyltransferase Substrates Using In Vitro Data
Drug Metabolism and Disposition 2012.0
Uridine 5′ — Diphosphoglucuronic acid (UDPGLcUA) in the human fetal liver, kidney and placenta
European Journal of Drug Metabolism and Pharmacokinetics 2000.0