Boranophosphate Isoster Controls P2Y-Receptor Subtype Selectivity and Metabolic Stability of Dinucleoside Polyphosphate Analogues

Journal of Medicinal Chemistry
2012.0

Abstract

Dinucleoside polyphosphates, Np(n)N', exert their physiological effects via P2 receptors (P2Rs). Np(n)N' are attractive drug candidates as they offer better stability and specificity compared to nucleotides, the most common P2R ligands. To further improve the agonist properties of Np(n)N', we synthesized novel isosters of dinucleoside polyphosphates where N and N' are A or U and where the Pα or Pβ phosphate groups are replaced by boranophosphate, denoted as Np(n)(α-B)N' or Np(n)(β-B)N' (n = 3, 4), respectively. The potency of Np(n)(α/β-B)N' analogues was evaluated at tP2Y(1), hP2Y(2), hP2Y(4), and rP2Y(6) receptors. The most potent P2Y(1)R and P2Y(6)R agonists were the Up(4)(β-B)A (A isomer, EC(50) of 0.5 μM vs 0.004 μM for 2-SMe-ADP) and Up(3)(α-B)U (B isomer, EC(50) of 0.3 μM vs 0.2 μM for UDP), respectively. The receptor subtype selectivity is controlled by the position of the borano moiety on the Np(n)N' polyphosphate chain and the type of the nucleobase. In addition, Np(n)(α/β-B)N' proved ∼22-fold more resistant to hydrolysis by e-NPP1, as compared to the corresponding Np(n)N' analogues. In summary, Up(4)(β-B)A and Up(3)(α-B)U are potent, stable, and highly selective P2Y(1) and P2Y(6) receptor agonists, respectively.

Knowledge Graph

Similar Paper

Boranophosphate Isoster Controls P2Y-Receptor Subtype Selectivity and Metabolic Stability of Dinucleoside Polyphosphate Analogues
Journal of Medicinal Chemistry 2012.0
Diadenosine and Diuridine Poly(borano)phosphate Analogues:  Synthesis, Chemical and Enzymatic Stability, and Activity at P2Y<sub>1</sub> and P2Y<sub>2</sub> Receptors
Journal of Medicinal Chemistry 2006.0
UDP made a highly promising stable, potent, and selective P2Y6-receptor agonist upon introduction of a boranophosphate moiety
Bioorganic &amp; Medicinal Chemistry 2012.0
Diadenosine 5′,5′′-(Boranated)polyphosphonate Analogues as Selective Nucleotide Pyrophosphatase/Phosphodiesterase Inhibitors
Journal of Medicinal Chemistry 2010.0
Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5′-polyphosphates
Bioorganic &amp; Medicinal Chemistry Letters 2001.0
A Novel Insulin Secretagogue Based on a Dinucleoside Polyphosphate Scaffold
Journal of Medicinal Chemistry 2010.0
Identification of hydrolytically stable and selective P2Y1 receptor agonists
European Journal of Medicinal Chemistry 2009.0
Adenine Nucleotide Analogues Locked in a Northern Methanocarba Conformation:  Enhanced Stability and Potency as P2Y<sub>1</sub> Receptor Agonists
Journal of Medicinal Chemistry 2002.0
Synthesis and potency of novel uracil nucleotides and derivatives as P2Y2 and P2Y6 receptor agonists
Bioorganic &amp; Medicinal Chemistry 2008.0
Synthesis and Structure−Activity Relationships of Uracil Nucleotide Derivatives and Analogues as Agonists at Human P2Y<sub>2</sub>, P2Y<sub>4</sub>, and P2Y<sub>6</sub>Receptors
Journal of Medicinal Chemistry 2006.0