Selective Inhibition of Human Type-5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) by Baccharin, a Component of Brazilian Propolis

Journal of Natural Products
2012.0

Abstract

The human aldo-keto reductase (AKR) 1C3, also known as type-5 17β-hydroxysteroid dehydrogenase and prostaglandin F synthase, has been suggested as a therapeutic target in the treatment of prostate and breast cancers. In this study, AKR1C3 inhibition was examined by Brazilian propolis-derived cinnamic acid derivatives that show potential antitumor activity, and it was found that baccharin (1) is a potent competitive inhibitor (K(i) 56 nM) with high selectivity, showing no significant inhibition toward other AKR1C isoforms (AKR1C1, AKR1C2, and AKR1C4). Molecular docking and site-directed mutagenesis studies suggested that the nonconserved residues Ser118, Met120, and Phe311 in AKR1C3 are important for determining the inhibitory potency and selectivity of 1. The AKR1C3-mediated metabolism of 17-ketosteroid and farnesal in cancer cells was inhibited by 1, which was effective from 0.2 μM with an IC(50) value of about 30 μM. Additionally, 1 suppressed the proliferation of PC3 prostatic cancer cells stimulated by AKR1C3 overexpression. This study is the first demonstration that 1 is a highly selective inhibitor of AKR1C3.

Knowledge Graph

Similar Paper

Selective Inhibition of Human Type-5 17β-Hydroxysteroid Dehydrogenase (AKR1C3) by Baccharin, a Component of Brazilian Propolis
Journal of Natural Products 2012.0
3-(3,4-Dihydroisoquinolin-2(1H)-ylsulfonyl)benzoic Acids: Highly Potent and Selective Inhibitors of the Type 5 17-β-Hydroxysteroid Dehydrogenase AKR1C3
Journal of Medicinal Chemistry 2012.0
Overview of AKR1C3: Inhibitor Achievements and Disease Insights
Journal of Medicinal Chemistry 2020.0
Development of Potent and Selective Indomethacin Analogues for the Inhibition of AKR1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase/Prostaglandin F Synthase) in Castrate-Resistant Prostate Cancer
Journal of Medicinal Chemistry 2013.0
Bioisosteres of Indomethacin as Inhibitors of Aldo-Keto Reductase 1C3
ACS Medicinal Chemistry Letters 2019.0
Hydroxytriazole derivatives as potent and selective aldo-keto reductase 1C3 (AKR1C3) inhibitors discovered by bioisosteric scaffold hopping approach
European Journal of Medicinal Chemistry 2017.0
Nonsteroidal anti-inflammatory drugs and their analogues as inhibitors of aldo-keto reductase AKR1C3: New lead compounds for the development of anticancer agents
Bioorganic & Medicinal Chemistry Letters 2005.0
Discovery of Novel Aldo-Keto Reductase 1C3 Inhibitors as Chemotherapeutic Potentiators for Cancer Drug Resistance
ACS Medicinal Chemistry Letters 2022.0
Chemical Constituents of Brazilian Propolis and Their Cytotoxic Activities
Journal of Natural Products 1998.0
Constituents of Chinese Propolis and Their Antiproliferative Activities
Journal of Natural Products 2002.0