Discovery of Phenylpropanoic Acid Derivatives Containing Polar Functionalities as Potent and Orally Bioavailable G Protein-Coupled Receptor 40 Agonists for the Treatment of Type 2 Diabetes

Journal of Medicinal Chemistry
2012.0

Abstract

As part of a program to identify potent GPR40 agonists with drug-like properties suitable for clinical development, the incorporation of polar substituents was explored with the intention of decreasing the lipophilicity of our recently disclosed phenylpropanoic acid derivative 1. This incorporation would allow us to mitigate the cytotoxicity issues observed with compound 1 and enable us to move away from the multifunctional free fatty acid-like structure. Substitutions on the 2',6'-dimethylbiphenyl ring were initially undertaken, which revealed the feasibility of introducing polar functionalities at the biphenyl 4'-position. Further optimization of this position and the linker led to the discovery of several 4'-alkoxybiphenyl derivatives, which showed potent GPR40 agonist activities with the best balance in terms of improved cytotoxicity profiles and favorable pharmacokinetic properties. Among them, 3-{2-fluoro-4-[({4'-[(4-hydroxy-1,1-dioxidotetrahydro-2H-thiopyran-4-yl)methoxy]-2',6'-dimethylbiphenyl-3-yl}methyl)amino]phenyl}propanoic acid (35) exhibited a robust plasma glucose-lowering effect and insulinotropic action during an oral glucose tolerance test in rats with impaired glucose tolerance.

Knowledge Graph

Similar Paper

Discovery of Phenylpropanoic Acid Derivatives Containing Polar Functionalities as Potent and Orally Bioavailable G Protein-Coupled Receptor 40 Agonists for the Treatment of Type 2 Diabetes
Journal of Medicinal Chemistry 2012.0
The Discovery, Preclinical, and Early Clinical Development of Potent and Selective GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083, and LY2922470)
Journal of Medicinal Chemistry 2016.0
Phenoxymethyl 1,3-oxazoles and 1,2,4-oxadiazoles as potent and selective agonists of free fatty acid receptor 1 (GPR40)
Bioorganic & Medicinal Chemistry Letters 2015.0
Design, synthesis and biological evaluation of a series of novel GPR40 agonists containing nitrogen heterocyclic rings
Bioorganic & Medicinal Chemistry Letters 2018.0
Design and synthesis of novel pyrimido[5,4-d]pyrimidine derivatives as GPR119 agonist for treatment of type 2 diabetes
Bioorganic & Medicinal Chemistry 2018.0
Discovery of a Novel Series of Peroxisome Proliferator-Activated Receptor α/γ Dual Agonists for the Treatment of Type 2 Diabetes and Dyslipidemia
Journal of Medicinal Chemistry 2005.0
Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus
Mini-Reviews in Medicinal Chemistry 2021.0
Design and biological evaluation of tetrahydropyridine derivatives as novel human GPR119 agonists
Bioorganic & Medicinal Chemistry Letters 2020.0
Novel free fatty acid receptor 1 (GPR40) agonists based on 1,3,4-thiadiazole-2-carboxamide scaffold
Bioorganic & Medicinal Chemistry 2016.0
Discovery of a Potent Free Fatty Acid 1 Receptor Agonist with Low Lipophilicity, Low Polar Surface Area, and Robust in Vivo Efficacy
Journal of Medicinal Chemistry 2016.0