Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2

Pflügers Archiv - European Journal of Physiology
2000.0

Abstract

Peptide transporters PEPT1 and PEPT2 transport numerous compounds including small peptides, peptide-like drugs and nonpeptidic compounds such as valacyclovir. PEPT1 and PEPT2 show low and high affinity for most substrates, respectively, but beta-lactam antibiotics without an alpha-amino group are the only known substrates that prefer PEPT1 to PEPT2. The aim of this study was to compare the recognition and affinity of various substrates between rat PEPT1 and rat PEPT2, and to determine the structural requirements influencing the substrate affinity. [14C]Glycylsarcosine uptake by PEPT1- or PEPT2-expressing transfectant was inhibited by di- and tripeptides, but not by amino acids, tetrapeptides or most cyclic dipeptides. All dipeptides and tripeptides examined showed more potent inhibition of [14C]glycylsarcosine uptake via PEPT2 than via PEPT1, irrespective of their charge and structure. Modification of the alpha-amino group of dipeptides reduced their substrate affinity to both transporters, as compared to unmodified dipeptides, but these dipeptides still showed potent inhibitory effects on PEPT2. Among the nonpeptidic substrates tested, only the eight-amino-octanoic acid displayed stronger inhibition of [14C]glycylsarcosine uptake in PEPT1 than in PEPT2. These findings suggest that alpha- or beta-amino carbonyl function is the key structure responsible for the higher affinity for PEPT2 than for PEPT1.

Knowledge Graph

Similar Paper

Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2
Pflügers Archiv - European Journal of Physiology 2000.0
Recognition of β-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK<sub>1</sub>cells
American Journal of Physiology-Renal Physiology 1997.0
Differential Recognition of β-Lactam Antibiotics by Intestinal and Renal Peptide Transporters, PEPT 1 and PEPT 2
Journal of Biological Chemistry 1995.0
Human PEPT1 Pharmacophore Distinguishes between Dipeptide Transport and Binding
Journal of Medicinal Chemistry 2006.0
Uptake of cyclic dipeptide by PEPT1 in Caco-2 cells: phenolic hydroxyl group of substrate enhances affinity for PEPT1
Journal of Pharmacy and Pharmacology 2002.0
Interaction of 31 β-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1
European Journal of Pharmaceutics and Biopharmaceutics 2005.0
Phe-Gly Dipeptidomimetics Designed for the Di-/Tripeptide Transporters PEPT1 and PEPT2:  Synthesis and Biological Investigations
Journal of Medicinal Chemistry 2004.0
Structural Requirements for the Substrates of the H<sup>+</sup>/Peptide Cotransporter PEPT2 Determined by Three-Dimensional Quantitative Structure−Activity Relationship Analysis
Journal of Medicinal Chemistry 2006.0
Proton/peptide cotransporter (PEPT 2) from human kidney: Functional characterization and chromosomal localization
Biochimica et Biophysica Acta (BBA) - Biomembranes 1995.0
The Predominant Contribution of Oligopeptide Transporter PepT1 to Intestinal Absorption of β-Lactam Antibiotics in the Rat Small Intestine
Journal of Pharmacy and Pharmacology 1997.0