(Z)-1-Aryl-3-arylamino-2-propen-1-ones, Highly Active Stimulators of Tubulin Polymerization: Synthesis, Structure–Activity Relationship (SAR), Tubulin Polymerization, and Cell Growth Inhibition Studies

Journal of Medicinal Chemistry
2012.0

Abstract

Tubulin, the major structural component of microtubules, is a target for the development of anticancer agents. A series of (Z)-1-aryl-3-arylamino-2-propen-1-one (10) were synthesized and evaluated for antiproliferative activity in cell-based assay. The most active compound (Z)-1-(2-bromo-3,4,5-trimethoxyphenyl)-3-(3-hydroxy-4-methoxyphenylamino)prop-2-en-1-one (10ae) was tested in 20 tumor cell lines including multidrug resistant phenotype and was found to induce apoptosis in all these cell lines with similar GI(50) values. Flow cytometry studies showed that 10ae arrested the cells in G2/M phase of cell cycle. In addition to G2/M block, these compounds caused microtubule stabilization like paclitaxel and induced apoptosis via activation of the caspase family. The observations made in this investigation demonstrate that (Z)-1-Aryl-3-arylamino-2-propen-1-one (10) represents a new class of microtubule-stabilizing agents.

Knowledge Graph

Similar Paper

(Z)-1-Aryl-3-arylamino-2-propen-1-ones, Highly Active Stimulators of Tubulin Polymerization: Synthesis, Structure–Activity Relationship (SAR), Tubulin Polymerization, and Cell Growth Inhibition Studies
Journal of Medicinal Chemistry 2012.0
Synthesis and biological evaluation of novel pyranochalcone derivatives as a new class of microtubule stabilizing agents
European Journal of Medicinal Chemistry 2013.0
Synthesis, antiproliferative activity, and mechanism of action of a series of 2-{[(2E)-3-phenylprop-2-enoyl]amino}benzamides
European Journal of Medicinal Chemistry 2011.0
10-(4-Phenylpiperazine-1-carbonyl)acridin-9(10H)-ones and related compounds: Synthesis, antiproliferative activity and inhibition of tubulin polymerization
Bioorganic & Medicinal Chemistry Letters 2021.0
10-(2-oxo-2-Phenylethylidene)-10H-anthracen-9-ones as Highly Active Antimicrotubule Agents: Synthesis, Antiproliferative Activity, and Inhibition of Tubulin Polymerization
Journal of Medicinal Chemistry 2009.0
Phenylimino-10H-anthracen-9-ones as novel antimicrotubule agents—synthesis, antiproliferative activity and inhibition of tubulin polymerization
Bioorganic & Medicinal Chemistry 2011.0
Design and Synthesis of Cyclopropylamide Analogues of Combretastatin-A4 as Novel Microtubule-Stabilizing Agents
Journal of Medicinal Chemistry 2013.0
2-Arylaminobenzothiazole-arylpropenone conjugates as tubulin polymerization inhibitors
MedChemComm 2017.0
2-(6-Aryl-3(Z)-hexen-1,5-diynyl)anilines as a New Class of Potent Antitubulin Agents
Journal of Medicinal Chemistry 2008.0
Synthesis and Biochemical Evaluation of 3-Phenoxy-1,4-diarylazetidin-2-ones as Tubulin-Targeting Antitumor Agents
Journal of Medicinal Chemistry 2016.0