Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease: Synthesis, biological assessment, and molecular modeling

European Journal of Medicinal Chemistry
2012.0

Abstract

The synthesis, biological assessment and molecular modeling of new pyridonepezils1-8, able to inhibit human acetylcholinesterase (hAChE) and human butyrylcholinesterase (hBuChE), are described. The new compounds have been designed as hybrids resulting from a conjunctive approach that combines the N-benzylpiperidine moiety, present in donepezil, and the 2-amino-6-chloropyridine heterocyclic ring system, connected by an appropriate polymethylene linker. Compounds 1-8 were prepared by reaction of 2-amino-6-chloro-4-phenylpyridine-3,5-dicarbonitrile (13) [or 2-amino-6-chloropyridine-3,5-dicarbonitrile (14)] with 2-(1-benzylpiperidin-4-yl)alkylamines (9-12). The biological evaluation of molecules 1-8 showed that compounds 1-6 are potent AChE inhibitors, in the submicromolar, while compounds 7 and 8 are on the nanomolar range, the most potent, 2-amino-6-((3-(1-benzylpiperidin-4-yl)propyl)amino)pyridine-3,5-dicarbonitrile (7), showing a IC(50) (hAChE) = 9.4 ± 0.4 nM. Inhibitors 2-8 are permeable as determined in the PAMPA assay. Compared to donepezil, compound 7 is in the same range of inhibitory activity for hAChE, and 703-fold more selective for hAChE than for hBuChE. Molecular modeling investigation on pyridonepezil7 supports its dual AChE inhibitory profile, binding simultaneously at the catalytic active and at peripheral anionic sites of the enzyme. The theoretical ADME analysis of pyridonepezils1-8 has been carried out. Overall, compound 7, a potent and selective dual AChEI, can be considered as a candidate with potential impact for further pharmacological development in Alzheimer's therapy.

Knowledge Graph

Similar Paper

Pyridonepezils, new dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease: Synthesis, biological assessment, and molecular modeling
European Journal of Medicinal Chemistry 2012.0
Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: New dual AChE inhibitors as potential drugs for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2013.0
Multipotent drugs with cholinergic and neuroprotective properties for the treatment of Alzheimer and neuronal vascular diseases. I. Synthesis, biological assessment, and molecular modeling of simple and readily available 2-aminopyridine-, and 2-chloropyridine-3,5-dicarbonitriles
Bioorganic & Medicinal Chemistry 2010.0
Design, synthesis and biological activity of novel donepezil derivatives bearing N -benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2017.0
Indolinone-based acetylcholinesterase inhibitors: Synthesis, biological activity and molecular modeling
European Journal of Medicinal Chemistry 2014.0
Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease
Journal of Medicinal Chemistry 2011.0
Design and synthesis of new piperidone grafted acetylcholinesterase inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0
Highly potent and selective aryl-1,2,3-triazolyl benzylpiperidine inhibitors toward butyrylcholinesterase in Alzheimer's disease
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase
Bioorganic & Medicinal Chemistry 2013.0