Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment

Journal of Medicinal Chemistry
2012.0

Abstract

Multidrug resistance (MDR) against standard therapies poses a serious challenge in cancer treatment, and there is a clinical need for new anticancer agents that would selectively target MDR malignancies. Our previous studies have identified a 4H-chromene system, CXL017 (4) as an example, that can preferentially kill MDR cancer cells. To further improve its potency, we have performed detailed structure-activity relationship (SAR) studies at the 3, 4, and 6 positions of the 4H-chromene system. The results reveal that the 3 and 4 positions prefer rigid and hydrophobic functional groups while the 6 position prefers a meta or para-substituted aryl functional group and the substituent should be small and hydrophilic. We have also identified and characterized nine MDR cancer cells that acquire MDR through different mechanisms and demonstrated the scope of our new lead, 9g, to selectively target different MDR cancers, which holds promise to help manage MDR in cancer treatment.

Knowledge Graph

Similar Paper

Structure–Activity Relationship (SAR) Study of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and the Potential of the Lead against Multidrug Resistance in Cancer Treatment
Journal of Medicinal Chemistry 2012.0
Structure–Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-6-(3,5-dimethoxyphenyl)-4-(2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate (CXL017) and Its Analogues
Journal of Medicinal Chemistry 2011.0
Exploring the Structure–Activity Relationship and Mechanism of a Chromene Scaffold (CXL Series) for Its Selective Antiproliferative Activity toward Multidrug-Resistant Cancer Cells
Journal of Medicinal Chemistry 2018.0
Structure−Activity Relationship and Molecular Mechanisms of Ethyl 2-Amino-4-(2-ethoxy-2-oxoethyl)-6-phenyl-4H-chromene-3-carboxylate (sHA 14-1) and Its Analogues
Journal of Medicinal Chemistry 2009.0
Structure–Activity Relationships of 8-Hydroxyquinoline-Derived Mannich Bases with Tertiary Amines Targeting Multidrug-Resistant Cancer
Journal of Medicinal Chemistry 2022.0
Synthesis and structure–activity relationships of taxuyunnanine C derivatives as multidrug resistance modulator in MDR cancer cells
Bioorganic & Medicinal Chemistry Letters 2007.0
Structure–activity relationship study of arylsulfonylimidazolidinones as anticancer agents
Bioorganic & Medicinal Chemistry Letters 2011.0
Comprehensive Study of Sansalvamide A Derivatives and their Structure–Activity Relationships against Drug-Resistant Colon Cancer Cell Lines
Journal of Medicinal Chemistry 2008.0
Synthesis, structure–activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents
European Journal of Medicinal Chemistry 2014.0
Novel structure–activity relationships and selectivity profiling of cage dimeric 1,4-dihydropyridines as multidrug resistance (MDR) modulators
Bioorganic & Medicinal Chemistry 2010.0