Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors

Bioorganic & Medicinal Chemistry
2012.0

Abstract

A series of dihydro-pyrazolyl-thiazolinone derivatives (5a-5t) have been synthesized and their biological activities were also evaluated as potential cyclooxygenase-2 (COX-2) inhibitors. Among these compounds, compound 2-(3-(3,4-dimethylphenyl)-5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)thiazol-4(5H)-one (5a) displayed the most potent COX-2 inhibitory activity with IC(50) of 0.5μM, but weak to COX-1. Docking simulation was performed to position compound 5a into the COX-2 active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity and low toxicity would be a potential and selective anti-cyclooxygenase-2 agent.

Knowledge Graph

Similar Paper

Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis, biological evaluation and molecular modeling of dihydropyrazole sulfonamide derivatives as potential COX-1/COX-2 inhibitors
Bioorganic & Medicinal Chemistry Letters 2015.0
Synthesis and biological evaluation of N-substituted-3,5-diphenyl-2-pyrazoline derivatives as cyclooxygenase (COX-2) inhibitors
European Journal of Medicinal Chemistry 2010.0
Molecular modeling, synthesis and screening of some new 4-thiazolidinone derivatives with promising selective COX-2 inhibitory activity
European Journal of Medicinal Chemistry 2012.0
Synthesis of novel pyrazole–thiadiazole hybrid as potential potent and selective cyclooxygenase-2 (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2014.0
Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2
Bioorganic & Medicinal Chemistry 2012.0
Design, synthesis, and biological evaluation of substituted hydrazone and pyrazole derivatives as selective COX-2 inhibitors: Molecular docking study
Bioorganic & Medicinal Chemistry 2011.0
Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2011.0
Design and synthesis of 3-alkyl-2-aryl-1,3-thiazinan-4-one derivatives as selective cyclooxygenase (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2009.0
Design and synthesis of new 2-aryl, 3-benzyl-(1,3-oxazolidine or 1,3-thiazolidine)-4-ones as selective cyclooxygenase (COX-2) inhibitors
Medicinal Chemistry Research 2010.0