Insecticidal and Neuroblocking Potencies of Variants of the Imidazolidine Moiety of Imidacloprid-Related Neonicotinoids and the Relationship to Partition Coefficient and Charge Density on the Pharmacophore

Journal of Agricultural and Food Chemistry
2007.0

Abstract

The pharmacophore of the neonicotinoid insecticide imidacloprid, nitroiminoimidazolidine, was modified to heterocycles such as thiazolidine, pyrrolidine, dihydroimidazole, dihydrothiazole, and pyridone conjugated to nitroimine (=NNO2) or nitromethylene (=CHNO2). Their 6-chloro-3-pyridylmethyl or 5-chloro-3-thiazolylmethyl derivatives were examined for insecticidal activity against the American cockroach by injection and for neuroblocking activity using the cockroach ganglion. Most of the compounds having the neonicotinoidal pharmacophore exhibited insecticidal activity at the nanomolar level, which was enhanced in the presence of synergists, and high neuroblocking activity at the micromolar level. Quantitative analysis for the compounds showed that the neuroblocking potency is proportional both to the Mulliken charge on the nitro oxygen atom and to the partition coefficient log P value. The equation for the insecticidal versus neuroblocking potencies indicated that both potencies are related proportionally with each other when the other factors are the same.

Knowledge Graph

Similar Paper

Insecticidal and Neuroblocking Potencies of Variants of the Imidazolidine Moiety of Imidacloprid-Related Neonicotinoids and the Relationship to Partition Coefficient and Charge Density on the Pharmacophore
Journal of Agricultural and Food Chemistry 2007.0
Pharmacophore of neonicotinoid insecticides
Journal of Pesticide Science 2008.0
Actions of imidacloprid, clothianidin and related neonicotinoids on nicotinic acetylcholine receptors of American cockroach neurons and their relationships with insecticidal potency
Journal of Pesticide Science 2006.0
Quantitative structure-activity relationships of imidacloprid and its analogs with substituents at the C5 position on the pyridine ring in the neuroblocking activity
Journal of Pesticide Science 2006.0
Discovery of Imidacloprid and Further Developments from Strategic Molecular Designs
Journal of Agricultural and Food Chemistry 2011.0
Asymmetric Chloronicotinyl Insecticide, 1-[1-(6-Chloro-3-pyridyl)ethyl]- 2-nitroiminoimidazolidine: Preparation, Resolution and Biological Activities toward Insects and Their Nerve Preparations
Bioscience, Biotechnology, and Biochemistry 2003.0
1,6-Bis[1-(2-chloro-5-thiazolylmethyl)-2-nitroiminoimidazolidin-3-yl]hexane and 1,3,5-tris[1-(6-chloronicotinyl)-2-nitroiminoimidazolidin-3-ylmethyl]benzene-Synthesis and insecticidal and neuroblocking activities in American cockroaches, Periplaneta americana
Journal of Pesticide Science 2006.0
Potency and Selectivity of Trifluoroacetylimino and Pyrazinoylimino Nicotinic Insecticides and Their Fit at a Unique Binding Site Niche
Journal of Medicinal Chemistry 2008.0
Structural Modification of the 6-Chloropyridyl Moiety in the Imidacloprid, Skeleton: Introduction of a Five-membered Heteroaromatic Ring and the Resulting Insecticidal Activity
Bioscience, Biotechnology, and Biochemistry 1993.0
Insecticidal and Neuroblocking Activities of Acetamiprid and Related Compounds
Journal of Pesticide Science 2003.0