Investigating the mode of action of sulfoxaflor: a fourth‐generation neonicotinoid

Pest Management Science
2013.0

Abstract

The precise mode of action of sulfoxaflor, a new nicotinic acetylcholine receptor-modulating insecticide, is unclear. A detailed understanding of the mode of action, especially in relation to the neonicotinoids, is essential for recommending effective pest management practices.Radiolabel binding experiments using a tritiated analogue of sulfoxaflor ([(3) H]-methyl-SFX) performed on membranes from Myzus persicae demonstrate that sulfoxaflor interacts specifically with the high-affinity imidacloprid binding site present in a subpopulation of the total nAChR pool. In competition studies, imidacloprid-like neonicotinoids displace [(3) H]-methyl-SFX at pM concentrations. The effects of sulfoxaflor on the exposed aphid nervous system in situ are analogous to those of imidacloprid and nitenpyram, and finally the high-affinity sulfoxaflor binding site is absent in a Myzus persicae strain (clone FRC) possessing a single amino acid point mutation (R81T) in the β-nAChR, a region critical for neonicotinoid interaction.The nicotinic acetylcholine receptor pharmacological profile of sulfoxaflor in aphids is consistent with that of imidacloprid. Additionally, the insecticidal activity of sulfoxaflor and the current commercialised neonicotinoids is affected by the point mutation in FRC Myzus persicae. Therefore, it is suggested that sulfoxalfor be considered a neonicotinoid, and that this be taken into account when recommending insecticide rotation partnering for effective resistance management programmes.

Knowledge Graph

Similar Paper

Investigating the mode of action of sulfoxaflor: a fourth‐generation neonicotinoid
Pest Management Science 2013.0
Discovery and Characterization of Sulfoxaflor, a Novel Insecticide Targeting Sap-Feeding Pests
Journal of Agricultural and Food Chemistry 2011.0
Insect Nicotinic Acetylcholine Receptor: Conserved Neonicotinoid Specificity of [<sup>3</sup>H]Imidacloprid Binding Site
Journal of Neurochemistry 2000.0
Actions of imidacloprid, clothianidin and related neonicotinoids on nicotinic acetylcholine receptors of American cockroach neurons and their relationships with insecticidal potency
Journal of Pesticide Science 2006.0
Potency and Selectivity of Trifluoroacetylimino and Pyrazinoylimino Nicotinic Insecticides and Their Fit at a Unique Binding Site Niche
Journal of Medicinal Chemistry 2008.0
Thiamethoxam acts as a target‐site synergist of spinosad in resistant strains of Frankliniella occidentalis
Pest Management Science 2013.0
Neonicotinoid Substituents Forming a Water Bridge at the Nicotinic Acetylcholine Receptor
Journal of Agricultural and Food Chemistry 2009.0
Binding of Nicotinoids and the Related Compounds to the Insect Nicotinic Acetyicholine Receptor
Journal of Pesticide Science 1992.0
Neonicotinoid Insecticides:  Molecular Features Conferring Selectivity for Insect versus Mammalian Nicotinic Receptors
Journal of Agricultural and Food Chemistry 2000.0
Structural Features of Azidopyridinyl Neonicotinoid Probes Conferring High Affinity and Selectivity for Mammalian α4β2 andDrosophilaNicotinic Receptors
Journal of Medicinal Chemistry 2002.0