Synthesis, Pharmacology, and Biostructural Characterization of Novel α4β2Nicotinic Acetylcholine Receptor Agonists

Journal of Medicinal Chemistry
2013.0

Abstract

In our search for selective agonists for the α(4)β(2) subtype of the nicotinic acetylcholine receptors (nAChRs), we have synthesized and characterized a series of novel heterocyclic analogues of 3-(dimethylamino)butyl dimethylcarbamate (DMABC, 4). All new heterocyclic analogues, especially N,N-dimethyl-4-(1-methyl-1H-imidazol-2-yloxy)butan-2-amine (7), showed an improved binding selectivity profile in favor of α(4)β(2) over other nAChR subtypes, primarily due to impaired binding at β(4) containing receptors. This observation can be rationalized based on cocrystal structures of (R)-4 and (R)-7 bound to acetylcholine binding protein from Lymnaea stagnalis. Functional characterization at both (α(4))(2)(β(2))(3) and (α(4))(3)(β(2))(2) receptors using two-electrode voltage clamp techniques in Xenopus laevis oocytes indicates that the investigated compounds interact differently with the two receptor stoichiometries. Compound 7 is an efficacious agonist at both α(4)-β(2) and α(4)-α(4) binding sites, while the close analogue N,N-dimethyl-4-(1,4-dimethyl-1H-imidazol-2-yloxy)butan-2-amine (9) primarily activates via α(4)-β(2) binding sites. The results suggest that it may be possible to rationally design compounds with specific stoichiometry preferences.

Knowledge Graph

Similar Paper

Synthesis, Pharmacology, and Biostructural Characterization of Novel α<sub>4</sub>β<sub>2</sub>Nicotinic Acetylcholine Receptor Agonists
Journal of Medicinal Chemistry 2013.0
Carbamoylcholine analogs as nicotinic acetylcholine receptor agonists—Structural modifications of 3-(dimethylamino)butyl dimethylcarbamate (DMABC)
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Conformationally restrained carbamoylcholine homologues. Synthesis, pharmacology at neuronal nicotinic acetylcholine receptors and biostructural considerations
European Journal of Medicinal Chemistry 2015.0
Novel Acetylcholine and Carbamoylcholine Analogues: Development of a Functionally Selective α<sub>4</sub>β<sub>2</sub>Nicotinic Acetylcholine Receptor Agonist
Journal of Medicinal Chemistry 2008.0
Exploration of the molecular architecture of the orthosteric binding site in the α4β2 nicotinic acetylcholine receptor with analogs of 3-(dimethylamino)butyl dimethylcarbamate (DMABC) and 1-(pyridin-3-yl)-1,4-diazepane
European Journal of Medicinal Chemistry 2015.0
Neonicotinic analogues: Selective antagonists for α4β2 nicotinic acetylcholine receptors
Bioorganic &amp; Medicinal Chemistry 2013.0
Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype
European Journal of Medicinal Chemistry 2016.0
Epibatidine analogues as selective ligands for the αxβ2-containing subtypes of nicotinic acetylcholine receptors
Bioorganic &amp; Medicinal Chemistry Letters 2005.0
Chemistry and Pharmacological Characterization of Novel Nitrogen Analogues of AMOP-H-OH (Sazetidine-A, 6-[5-(Azetidin-2-ylmethoxy)pyridin-3-yl]hex-5-yn-1-ol) as α4β2-Nicotinic Acetylcholine Receptor-Selective Partial Agonists
Journal of Medicinal Chemistry 2010.0
Synthesis, Binding, and Modeling Studies of New Cytisine Derivatives, as Ligands for Neuronal Nicotinic Acetylcholine Receptor Subtypes
Journal of Medicinal Chemistry 2009.0