1,4,2-Benzo/pyridodithiazine 1,1-Dioxides Structurally Related to the ATP-Sensitive Potassium Channel Openers 1,2,4-Benzo/pyridothiadiazine 1,1-Dioxides Exert a Myorelaxant Activity Linked to a Distinct Mechanism of Action

Journal of Medicinal Chemistry
2013.0

Abstract

The synthesis of diversely substituted 3-alkyl/aralkyl/arylamino-1,4,2-benzodithiazine 1,1-dioxides and 3-alkylaminopyrido[4,3-e]-1,4,2-dithiazine 1,1-dioxides is described. Their biological activities on pancreatic β-cells and on smooth muscle cells were compared to those of the reference ATP-sensitive potassium channel (KATP channel) openers diazoxide and 7-chloro-3-isopropylamino-4H-1,2,4-benzothiadiazine 1,1-dioxide. The aim was to assess the impact on biological activities of the replacement of the 1,2,4-thiadiazine ring by an isosteric 1,4,2-dithiazine ring. Most of the dithiazine analogues were found to be inactive on the pancreatic tissue, although some compounds bearing a 1-phenylethylamino side chain at the 3-position exerted a marked myorelaxant activity. Such an effect did not appear to be related to the opening of KATP channels but rather reflected a mechanism of action similar to that of calcium channel blockers. Tightly related 3-(1-phenylethyl)sulfanyl-4H-1,2,4-benzothiadiazine 1,1-dioxides were also found to exert a pronounced myorelaxant activity, resulting from both a KATP channel activation and a calcium channel blocker mechanism. The present work highlights the critical importance of an intracyclic NH group at the 4-position, as well as an exocyclic NH group linked to the 3-position of the benzo- and pyridothiadiazine dioxides, for activity on KATP channels.

Knowledge Graph

Similar Paper

1,4,2-Benzo/pyridodithiazine 1,1-Dioxides Structurally Related to the ATP-Sensitive Potassium Channel Openers 1,2,4-Benzo/pyridothiadiazine 1,1-Dioxides Exert a Myorelaxant Activity Linked to a Distinct Mechanism of Action
Journal of Medicinal Chemistry 2013.0
Design and synthesis of new potassium channel activators derived from the ring opening of diazoxide: Study of their vasodilatory effect, stimulation of elastin synthesis and inhibitory effect on insulin release
Bioorganic & Medicinal Chemistry 2015.0
Influence of the alkylsulfonylamino substituent located at the 6-position of 2,2-dimethylchromans structurally related to cromakalim: From potassium channel openers to calcium entry blockers?
European Journal of Medicinal Chemistry 2014.0
Pyrrolo[2,1-c][1,4]benzothiazines: Synthesis, Structure-Activity Relationships, Molecular Modeling Studies, and Cardiovascular Activity
Journal of Medicinal Chemistry 1995.0
Relaxant activity of 4-amido-3,4-dihydro-2H-1-benzopyran-3-ols and 4-amido-2H-1-benzopyrans on guinea pig isolated trachealis
Journal of Medicinal Chemistry 1990.0
Aminoalkynyldithianes. A new class of calcium channel blockers
Journal of Medicinal Chemistry 1991.0
Synthesis and biological activity of novel calcium channel blockers: 2,5-dihydro-4-methyl-2-phenyl-1,5-benzothiazepine-3-carboxylic acid esters and 2,5-dihydro-4-methyl-2-phenyl-1,5-benzodiazepine-3-carboxylic acid esters
Journal of Medicinal Chemistry 1987.0
Synthesis, characterization, and pharmacological evaluation of benzothiopyran derivatives as a novel class of calcium channel blockers
Medicinal Chemistry Research 2013.0
Novel calcium antagonists. Synthesis and structure-activity relationship studies of benzothiazoline derivatives
Journal of Medicinal Chemistry 1988.0
Design, synthesis and biological evaluation of novel ring-opened cromakalim analogues with relaxant effects on vascular and respiratory smooth muscles and as stimulators of elastin synthesis
European Journal of Medicinal Chemistry 2018.0