Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule inhibitors

Bioorganic & Medicinal Chemistry
2013.0

Abstract

Compounds 1-4 were previously reported as potent antimitotic and antitumor agents with Pgp modulatory effects. Compounds 5-18 have been synthesized in an attempt to optimize the various activities of 1-4. Compounds 5-10 explored the influence of methoxy substitutions on the 7-benzyl moiety in 1, while 11-18 investigated the influence of incorporation of a sulfur linker at C5 compared to 1-3. Compounds 5-10 demonstrated potent single-digit micromolar tumor cell cytotoxicity, Pgp modulation and microtubule inhibition. Compound 7 of this series was the most potent and showed GI(50) values in the nanomolar range against several human tumor cell lines in the standard NCI preclinical in vitro screen. Antitumor activity and Pgp modulatory effects were found to decrease for the 5-phenylthio compounds 11-14 compared to their 5-phenylethyl analogs 2-4 and the standard compound Taxol. Incorporation of methoxy substitutions on the 7-benzyl moiety improved antitumor activity for the 5-phenylthio compounds 16 and 17. Compounds 16 and 17 demonstrated single to two-digit micromolar inhibition of tumor cells.

Knowledge Graph

Similar Paper

Synthesis of 5,7-disubstituted-4-methyl-7H-pyrrolo[2,3-d]pyrimidin-2-amines as microtubule inhibitors
Bioorganic & Medicinal Chemistry 2013.0
Discovery of Novel Antitumor Antimitotic Agents That Also Reverse Tumor Resistance
Journal of Medicinal Chemistry 2007.0
2-Amino-4-methyl-5-phenylethyl substituted-7-N-benzyl-pyrrolo[2,3-d]pyrimidines as novel antitumor antimitotic agents that also reverse tumor resistance
Bioorganic & Medicinal Chemistry 2011.0
Design, Synthesis, and Preclinical Evaluation of 4-Substituted-5-methyl-furo[2,3-d]pyrimidines as Microtubule Targeting Agents That Are Effective against Multidrug Resistant Cancer Cells
Journal of Medicinal Chemistry 2016.0
Sterically induced conformational restriction: Discovery and preclinical evaluation of novel pyrrolo[3,2-d]pyrimidines as microtubule targeting agents
Bioorganic & Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of novel 4-(pyrrolo[2,3-d]pyrimidine-4-yloxy)benzamide derivatives as potential antitumor agents
Bioorganic & Medicinal Chemistry Letters 2021.0
Synthesis and biological evaluation of (1-aryl-1H-pyrazol-4-yl) (3,4,5-trimethoxyphenyl)methanone derivatives as tubulin inhibitors
European Journal of Medicinal Chemistry 2018.0
Structure–Activity Relationship and in Vitro and in Vivo Evaluation of the Potent Cytotoxic Anti-microtubule Agent N-(4-Methoxyphenyl)-N,2,6-trimethyl-6,7-dihydro-5H-cyclopenta[d]pyrimidin-4-aminium Chloride and Its Analogues As Antitumor Agents
Journal of Medicinal Chemistry 2013.0
Synthesis of N4-(substituted phenyl)-N4-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells
Bioorganic & Medicinal Chemistry 2013.0
Discovery and preclinical evaluation of 7-benzyl-N-(substituted)-pyrrolo[3,2-d]pyrimidin-4-amines as single agents with microtubule targeting effects along with triple-acting angiokinase inhibition as antitumor agents
Bioorganic & Medicinal Chemistry 2017.0