Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach

Bioorganic & Medicinal Chemistry Letters
2013.0

Abstract

We report a novel VEGFR-2 inhibitor, developed by the back-to-front approach. Docking experiments indicated that the 3-chloromethylphenylurea motif of the lead compound occupied the back pocket of VEGFR-2 kinase. An attempt was made to enhance the binding affinity of 1 by expanding the structure to access the front pocket using a triazole linker. A library of 1,4-(disubstituted)-1H-1,2,3-triazoles were screened in silico, and one compound (VH02) was identified with an IC50 against VEGFR-2 of 0.56μM. VH02 showed antiangiogenic effects, inhibiting tube formation in HUVEC cells (EA.hy926) at 0.3μM, 13 times lower than its cytotoxic dose. These enzymatic and cellular activities suggest that VH02 has potential as a lead for further optimization.

Knowledge Graph

Similar Paper

Novel VEGFR-2 kinase inhibitors identified by the back-to-front approach
Bioorganic & Medicinal Chemistry Letters 2013.0
Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors
European Journal of Medicinal Chemistry 2010.0
Discovery of arylamide-5-anilinoquinazoline-8-nitro derivatives as VEGFR-2 kinase inhibitors: Synthesis, in vitro biological evaluation and molecular docking
Bioorganic & Medicinal Chemistry Letters 2019.0
Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold
European Journal of Medicinal Chemistry 2021.0
Design, synthesis and in vitro evaluation of 6-amide-2-aryl benzoxazole/benzimidazole derivatives against tumor cells by inhibiting VEGFR-2 kinase
European Journal of Medicinal Chemistry 2019.0
Discovery of biphenyl-aryl ureas as novel VEGFR-2 inhibitors. Part 4: Exploration of diverse hinge-binding fragments
Bioorganic & Medicinal Chemistry 2015.0
Discovery of novel VEGFR-2 inhibitors embedding 6,7-dimethoxyquinazoline and diarylamide fragments
Bioorganic & Medicinal Chemistry Letters 2021.0
Discovery of N-(2-phenyl-1H-benzo[d]imidazol-5-yl)quinolin-4-amine derivatives as novel VEGFR-2 kinase inhibitors
European Journal of Medicinal Chemistry 2014.0
Synthesis, antiangiogenesis evaluation and molecular docking studies of 1-aryl-3-[(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas: Discovery of a new substitution pattern for type II VEGFR-2 Tyr kinase inhibitors
Bioorganic & Medicinal Chemistry 2015.0
Design, synthesis and biological evaluation of biphenyl urea derivatives as novel VEGFR-2 inhibitors
MedChemComm 2013.0