NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity

Bioorganic & Medicinal Chemistry Letters
2013.0

Abstract

To search for potent anti-Alzheimer's disease (AD) agents with multifunctional effects, 12 NO-donating tacrine-flurbiprofen hybrid compounds (2a-l) were synthesized and biologically evaluated. It was found that all the new target compounds showed selective butyrylcholinesterase (BuChE) inhibitory activity in vitro comparable or higher than tacrine and the tacrine-flurbiprofen hybrid compounds 1a-c, and released moderate amount of NO in vitro. The kinetic study suggests that one of the most active and highest BuChE selective compounds 2d may not only compete with the substrate for the same catalytic active site (CAS) but also interact with a second binding site. Furthermore, 2d and 2l exhibited significant vascular relaxation effect, which is beneficial for the treatment of AD. All the results suggest that 2d and 2l might be promising lead compounds for further research.

Knowledge Graph

Similar Paper

NO-donating tacrine derivatives as potential butyrylcholinesterase inhibitors with vasorelaxation activity
Bioorganic & Medicinal Chemistry Letters 2013.0
Synthesis and Biological Evaluation of NO-Donor-Tacrine Hybrids as Hepatoprotective Anti-Alzheimer Drug Candidates
Journal of Medicinal Chemistry 2008.0
Tacrine–Ferulic Acid–Nitric Oxide (NO) Donor Trihybrids as Potent, Multifunctional Acetyl- and Butyrylcholinesterase Inhibitors
Journal of Medicinal Chemistry 2012.0
Design, synthesis and evaluation of tacrine–flurbiprofen–nitrate trihybrids as novel anti-Alzheimer’s disease agents
Bioorganic & Medicinal Chemistry 2013.0
Design and synthesis of tacrine–ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates
Bioorganic & Medicinal Chemistry Letters 2008.0
Synthesis and pharmacological evaluation of multifunctional tacrine derivatives against several disease pathways of AD
Bioorganic & Medicinal Chemistry Letters 2015.0
Synthesis and Biological Evaluation of Novel Tacrine Derivatives and Tacrine–Coumarin Hybrids as Cholinesterase Inhibitors
Journal of Medicinal Chemistry 2014.0
Syntheses of coumarin–tacrine hybrids as dual-site acetylcholinesterase inhibitors and their activity against butylcholinesterase, Aβ aggregation, and β-secretase
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as multi-targeted compounds against Alzheimer's disease
European Journal of Medicinal Chemistry 2016.0
O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation
Bioorganic & Medicinal Chemistry 2012.0