Carbonic anhydrase inhibitors. Benzenesulfonamides incorporating cyanoacrylamide moieties strongly inhibit Saccharomyces cerevisiae β-carbonic anhydrase

Bioorganic & Medicinal Chemistry Letters
2013.0

Abstract

A series of benzenesulfonamides incorporating cyanoacrylamide moieties (tyrphostine analogs) were assayed as inhibitors of the β-carbonic anhydrase (CA, EC 4.2.1.1) from Saccharomyces cerevisiae, ScCA. Some of these compounds were low nanomolar or subnanomolar ScCA inhibitors and showed selectivity ratios in the range of 4.91-69.86 for inhibiting the yeast enzyme over the offtarget human (h) isoforms hCA I and of 6.46-13.52 for inhibiting ScCA over hCA II. The model organism S. cerevisiae and this particular enzyme may be useful for detecting antifungals with a novel mechanism of action compared to the classical azole drugs to which significant drug resistance emerged. Indeed, some of these sulfonamides inhibited the growth of the yeast with CC50-s in the range of 0.73-6.54 μM.

Knowledge Graph

Similar Paper

Carbonic anhydrase inhibitors. Benzenesulfonamides incorporating cyanoacrylamide moieties strongly inhibit Saccharomyces cerevisiae β-carbonic anhydrase
Bioorganic & Medicinal Chemistry Letters 2013.0
Carbonic anhydrase inhibitors: Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with sulfonamides and sulfamates
Bioorganic & Medicinal Chemistry 2009.0
Carbonic anhydrase inhibitors: Inhibition of the β-class enzyme from the pathogenic yeast Candida glabrata with sulfonamides, sulfamates and sulfamides
Bioorganic & Medicinal Chemistry Letters 2013.0
Carbonic anhydrase inhibitors. The β-carbonic anhydrases from the fungal pathogens Cryptococcus neoformans and Candida albicans are strongly inhibited by substituted-phenyl-1H-indole-5-sulfonamides
Bioorganic & Medicinal Chemistry Letters 2010.0
Carbonic anhydrase inhibitors: Benzenesulfonamides incorporating cyanoacrylamide moieties are low nanomolar/subnanomolar inhibitors of the tumor-associated isoforms IX and XII
Bioorganic & Medicinal Chemistry 2013.0
Carbonic anhydrase inhibitors. Inhibition of the β-class enzyme from the yeast Saccharomyces cerevisiae with anions
Bioorganic & Medicinal Chemistry Letters 2008.0
Isatin analogs as novel inhibitors of Candida spp. β-carbonic anhydrase enzymes
Bioorganic & Medicinal Chemistry 2016.0
Inhibition of β-carbonic anhydrases with ureido-substituted benzenesulfonamides
Bioorganic & Medicinal Chemistry Letters 2011.0
Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with branched aliphatic/aromatic carboxylates and their derivatives
Bioorganic & Medicinal Chemistry Letters 2011.0
Carbonic anhydrase inhibitors: Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions
Bioorganic & Medicinal Chemistry Letters 2008.0