1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: Synthesis, biological evaluation and molecular modeling studies

Bioorganic & Medicinal Chemistry
2013.0

Abstract

A novel group of 1,4-diaryl-substituted triazoles was designed and synthesized by introducing the cyclooxygenase-2 (COX-2) pharmacophore SO2NH2 attached to one aryl ring and various substituents (H, F, Cl, CH3 or OCH3) attached to the other aryl ring. The effects of size and flexibility of the compounds upon COX-1/COX-2 inhibitory potency and selectivity was studied by increasing the size of an alkyl linker chain [(-CH2)n, where n=0, 1, 2]. In vitro COX-1/COX-2 inhibition studies showed that all compounds (14-18, 21-25 and 28-32) are more potent inhibitors of COX-2 isozyme (IC50=0.17-28.0μM range) compared to COX-1 isozyme (IC50=21.0 to >100μM range). Within the group of 1,4 diaryl-substituted triazoles, 4-{2-[4-(4-chloro-phenyl)-[1,2,3]triazol-1-yl]-ethyl}-benzenesulfonamide (compound 30) displayed highest COX-2 inhibitory potency and selectivity (COX-1: IC50=>100μM, COX-2: IC50=0.17μM, SI >588). Molecular docking studies using the catalytic site of COX-1 and COX-2, respectively, provided complementary theoretical support for the obtained experimental biological structure-activity relationship data. Results of molecular docking studies revealed that COX-2 pharmacophore SO2NH2 in compound 30 is positioned in the secondary pocket of COX-2 active site; with the nitrogen atom of the SO2NH2 group being hydrogen bonded to Q192 (N⋯OC=2.85Å), and one of the oxygen atoms of SO2NH2 group forming a hydrogen bond to H90 (SO⋯N=2.38Å).

Knowledge Graph

Similar Paper

1,4-Diaryl-substituted triazoles as cyclooxygenase-2 inhibitors: Synthesis, biological evaluation and molecular modeling studies
Bioorganic & Medicinal Chemistry 2013.0
Design and synthesis of new 2,4,5-triarylimidazole derivatives as selective cyclooxygenase (COX-2) inhibitors
Medicinal Chemistry Research 2012.0
Synthesis and cyclooxygenase inhibition of various (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives
Bioorganic & Medicinal Chemistry 2009.0
Design, synthesis and biological evaluation of new 2,3-diarylquinoline derivatives as selective cyclooxygenase-2 inhibitors
Bioorganic & Medicinal Chemistry 2010.0
Design and synthesis of new 1,2-diaryl-4,5,6,7-tetrahydro-1H-benzo[d] imidazoles as selective cyclooxygenase (COX-2) inhibitors
Medicinal Chemistry Research 2012.0
Synthesis and evaluation of 1,5-diaryl-substituted tetrazoles as novel selective cyclooxygenase-2 (COX-2) inhibitors
Bioorganic & Medicinal Chemistry Letters 2011.0
Structure–activity relationship of novel series of 1,5-disubstituted tetrazoles as cyclooxygenase-2 inhibitors: Design, synthesis, bioassay screening and molecular docking studies
Bioorganic & Medicinal Chemistry Letters 2016.0
Design and synthesis of new 2-aryl, 3-benzyl-(1,3-oxazolidine or 1,3-thiazolidine)-4-ones as selective cyclooxygenase (COX-2) inhibitors
Medicinal Chemistry Research 2010.0
Synthesis, anti-inflammatory, cyclooxygenases inhibitions assays and histopathological study of poly-substituted 1,3,5-triazines: Confirmation of regiospecific pyrazole cyclization by HMBC
European Journal of Medicinal Chemistry 2017.0
Synthesis and biologic evaluation of new 3-phenoxyazetidin-2-one derivatives as selective cyclooxygenase-2 inhibitors
Medicinal Chemistry Research 2013.0